luogu1082 同余方程
题目大意:求$$ax\equiv 1(\ \mathrm{mod}\ m)$$的最小正整数解。
因为$ax-1|m$,故令$ax-1=-ym$,原方程就变成了$ax+my=1$。根据bezout定理此方程有解当且仅当$\gcd(a, m)=1$成立,然后解方程$ax+my=\gcd(a,m)$即可。
先不考虑原题,若要解方程$$ax+by=\gcd(a,b)$$,要用到扩展欧几里得算法。当$b=0$时,显然$x=1,y=0$。因为$$\gcd(a,b)=\gcd(b,a\ \mathrm{mod}\ b), a\ \mathrm{mod}\ b=a-\lfloor \frac{a}{b}\rfloor b$$,所以如果知道了$$bx'+(a-\lfloor \frac{a}{b}\rfloor b)y'=\gcd(b, a\ \mathrm{mod}\ b)=\gcd(a, b)$$,将等式左面倒一倒就变成了$$ay'+b(x'-\lfloor \frac{a}{b}\rfloor y')=\gcd(a,b)$$。所以令当前的$x=y', y=x'-(a/b)*y'$便是一个解。于是在欧几里得算法的基础上加上这一句即可。
回到原题,人家要求最小正整数解,因为该同余方程$ax\equiv 1(mod m)$的通解为所有模m与x0同余的整数($ax+amk=a(x+mk)\equiv 1(\ \mathrm{mod}\ m)$依然成立),我们要将解转移使$x\in [1,m)$。故将以上解出的$x$进行(x%m+m)%m。x%=m时,$x\in (-m,m)$。再加m模m是为了处理x是负数的情况。
#include <cstdio>
#include <cstring>
using namespace std; long long Exgcd(long long a, long long b, long long &x, long long &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
long long d = Exgcd(b, a%b, x, y);
long long tx = x;
x = y;
y = tx - (a / b)*y;
return d;
} long long Inv(long long a, long long m)
{
long long x, y;
Exgcd(a, m, x, y);
return (x%m + m) % m;
} int main()
{
long long a, m;
scanf("%lld%lld", &a, &m);
printf("%lld\n", Inv(a, m));
return 0;
}
luogu1082 同余方程的更多相关文章
- luogu1082 [NOIp2012]同余方程 (扩展欧几里得)
由于保证有解,所以1%gcd(x,y)=0,所以gcd(x,y)=1,直接做就行了 #include<bits/stdc++.h> #define pa pair<int,int&g ...
- NOIP2012同余方程[exgcd]
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整 ...
- NOIP2012同余方程
描述 求关于 x的同余方程 ax ≡ 1(mod b) 的最小正整数解. 输入格式 输入文件 mod.in输入只有一行,包含两个正整数a,b,用一个空格隔开. 输出格式 输出文件 为 modmod ...
- [NOIP2012] 提高组 洛谷P1082 同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- POJ 1061 同余方程
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是 它们出发之前忘记了一件很重要的事情,既没有问清楚对方的 ...
- NOIP2012 同余方程-拓展欧几里得
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 数论 - n元线性同余方程的解法
note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m ...
- 【codevs1200】 NOIP2012—同余方程
codevs.cn/problem/1200/ (题目链接) 题意 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. Solution 这道题其实就是求${a~mod~b}$的逆元 ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
随机推荐
- maven添加本地jar包的方法
1.将一个本地的jar包随便放在一个放入本地文件夹中 (文件夹位置 和 jar包名称都随意) 例:F:\java\repository\a 文件夹下,名称为:icepdf-core-6.0.jar 2 ...
- .net MVC成长记录(四)Linq(1)
今天不忙,没什么事情,继续写写随笔. 之前的文章写到了EF,很多人留言EF的操作用什么? 今天,就继续给大家分享EF的操作, Linq . 先从Linq操作Object内置对象开始 从Linq的基础 ...
- Objective-C类成员变量深度剖析--oc对象内存模型
目录 Non Fragile ivars 为什么Non Fragile ivars很关键 如何寻址类成员变量 真正的“如何寻址类成员变量” Non Fragile ivars布局调整 为什么Objec ...
- mysql查询表里的重复数据
先贴个简单的SQL语句 select username,count(*) as count from hk_test group by username having count>1; 使用详情 ...
- Python检测删除你的好友-wxpy模块(发送特殊字符式)
下面是代码: from wxpy import *import timeprint("本软件采用特殊字符检测,即对方收不到任何信息!")print("或许某个版本微信就会 ...
- UOJ #214 合唱队形 (概率期望计数、DP、Min-Max容斥)
9个月的心头大恨终于切掉了!!!! 非常好的一道题,不知为何uoj上被点了70个差评. 题目链接: http://uoj.ac/problem/214 题目大意: 请自行阅读. 题解: 官方题解讲得相 ...
- setTimeout(fn,0)的作用分析
众所周知,大家对setTimeout的用法肯定都比较熟悉了,但是不是还是会经常忘记使用呢,例如博主阿里面试时就忘了,见阿里前端面试. 今天跟大家讨论一下setTimeout(fn,0)的用法,相信很多 ...
- 第二次训练 密码acmore
网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=26733#overview 贪心全场!!!! A题: #include <io ...
- Spring Boot-properties使用(二)
自定义属性 @value注入 在application.properties新增配置 student.name=小明student.age=12student.info=${student.name} ...
- 百度之星2014复赛 - 1001 - Find Numbers
先上题目: Find Numbers Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...