Project Euler 23 Non-abundant sums( 整数因子和 )
题意:
完全数是指真因数之和等于自身的那些数。例如,28的真因数之和为1 + 2 + 4 + 7 + 14 = 28,因此28是一个完全数。
一个数n被称为亏数,如果它的真因数之和小于n;反之则被称为盈数。
由于12是最小的盈数,它的真因数之和为1 + 2 + 3 + 4 + 6 = 16,所以最小的能够表示成两个盈数之和的数是24。通过数学分析可以得出,所有大于28123的数都可以被写成两个盈数的和;尽管我们知道最大的不能被写成两个盈数的和的数要小于这个值,但这是通过分析所能得到的最好上界。
找出所有不能被写成两个盈数之和的正整数,并求它们的和。
思路:此题与欧拉21题相似
/*************************************************************************
> File Name: euler023.c
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年06月30日 星期五 19时30分05秒
************************************************************************/
#include <stdio.h>
#include <inttypes.h>
#define MAX_N 28123
int32_t isPrime[MAX_N + 10] = {0}; // 记录最小素数幂次方isPrime[24] = 8 (2^3)
int32_t prime[MAX_N + 10] = {0}; // 记录素数
int32_t d[MAX_N + 10] = {0}; // 记录整数分解约数和
int32_t abundantSum[MAX_N + 10] = {0};
int32_t vis[MAX_N + 10] = {0};
void Init() {
for (int32_t i = 2 ; i <= MAX_N ; i++) {
if (!isPrime[i]) {
isPrime[i] = i;
prime[++prime[0]] = i;
d[i] = i + 1;
}
for (int32_t j = 1 ; j <= prime[0] ; j++) {
if (i * prime[j] > MAX_N) break;
if (i % prime[j] != 0) { // 在prime[j]还小于i的最小素因子时
isPrime[i * prime[j]] = prime[j];
d[i * prime[j]] = d[i] * d[prime[j]];
} else {
isPrime[i * prime[j]] = isPrime[i] * prime[j];
d[i * prime[j]] = d[i] * (isPrime[i] * prime[j] * prime[j] - 1) / (isPrime[i] * prime[j] - 1);
break;
}
}
}
for (int32_t i = 1 ; i <= MAX_N ; i++) {
d[i] -= i;
if (d[i] <= i) continue;
abundantSum[++abundantSum[0]] = i;
}
for (int32_t i = 1 ; i < abundantSum[0] ; i++) {
for (int32_t j = i + 1 ; j <= abundantSum[0] ; j++) {
if (abundantSum[i] + abundantSum[j] > MAX_N) continue;
vis[abundantSum[i] + abundantSum[j]] = 1;
}
}
}
int32_t main() {
Init();
int32_t sum = 0;
for (int32_t i = 1 ; i <= MAX_N ; i++) {
if (vis[i]) continue;
sum += i;
}
printf("%d\n",sum);
return 0;
}
Project Euler 23 Non-abundant sums( 整数因子和 )的更多相关文章
- Project Euler P105:Special subset sums: testing 特殊的子集和 检验
Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...
- Python练习题 040:Project Euler 012:有超过500个因子的三角形数
本题来自 Project Euler 第12题:https://projecteuler.net/problem=12 # Project Euler: Problem 12: Highly divi ...
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
- Python练习题 029:Project Euler 001:3和5的倍数
开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...
- Project Euler 第一题效率分析
Project Euler: 欧拉计划是一系列挑战数学或者计算机编程问题,解决这些问题需要的不仅仅是数学功底. 启动这一项目的目的在于,为乐于探索的人提供一个钻研其他领域并且学习新知识的平台,将这一平 ...
- Python练习题 045:Project Euler 017:数字英文表达的字符数累加
本题来自 Project Euler 第17题:https://projecteuler.net/problem=17 ''' Project Euler 17: Number letter coun ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Project Euler 9
题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...
- Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...
随机推荐
- 优酷土豆资深工程师:MySQL高可用之MaxScale与MHA
本文根据DBAplus社群第67期线上分享整理而成 本次分享主要包括以下内容: 1.MySQL高可用方案 2.为什么选择MHA 3.读写分离方案的寻找以及为什么选择Maxscale 一.MySQL ...
- HDU 3987 && DINIC
很容易发现是网络流的题目,但最少边怎么求呢?初时想不到,但画图后忽然发现可以这样: 求一次网络流最小割后,把满流的边置1,不满流的置INF.再求一次最大流即可. 为什么呢? 是否会存在一些边当前不满流 ...
- poj 3267 The Cow Lexicon (动态规划)
The Cow Lexicon Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8167 Accepted: 3845 D ...
- BZOJ 1044 HAOI2008 木棍切割 二分答案+动态规划
题目大意:给定n个连在一起的木棍.分成m+1段.使每段最大值最小,求最大值的最小值及最大值最小时切割的方案数 第一问水爆了--二分答案妥妥秒过 第二问就有些难度了 首先我们令f[i][j]表示用前j个 ...
- android中常见的内存泄漏和解决的方法
android中的内存溢出预计大多数人在写代码的时候都出现过,事实上突然认为工作一年和工作三年的差别是什么呢.事实上干的工作或许都一样,产品汪看到的结果也都一样,那差别就是速度和质量了. 写在前面的一 ...
- 阿里巴巴集团2014年校园招聘系统project师北京笔试题
第一部分 单选题(前10题,每题2分;后10题,每题3分;共50分.选对得满分,选错倒扣一分,不选得0分.) 1.字符串"alibaba"有 个不同的排列. A. 5040 B. ...
- 关于Linux静态库和动态库的分析
关于Linux静态库和动态库的分析 关于Linux静态库和动态库的分析 1.什么是库 在windows平台和linux平台下都大量存在着库. 本质上来说库是一种可运行代码的二进制形式.能够被操作系统加 ...
- ant整合junit自己主动化測试
一. 使用Junit进行測试 1. Java业务代码: public class HelloWorld { // 測试返回"world" public String hello() ...
- C 中 main 函数的參数
看到不同的人写出的 C 或者 C++ 程序时,可能会出现不一样的 main 函数的定义,以下的几种定义方式都是对的: int main(void) int main(int argc) i ...
- setResult详解
startActivityForResult与startActivity的不同之处在于:1.startActivity( ) 仅仅是跳转到目标页面,若是想跳回当前页面,则必须再使用一次startAct ...