Android中Alarm的机制
本次给大家分析的是Android中Alarm的机制所用源码为最新的Android4.4.4。首先简单介绍如何使用Alarm并给出其工作原理,接着分析Alarm和Timer以及Handler在完成定时任务上的差别,最后分析Alarm机制的源码。
什么是Alarm
Alarm是android提供的用于完成闹钟式定时任务的类,系统通过AlarmManager来管理所有的Alarm,Alarm支持一次性定时任务和循环定时任务,它的使用方式很简单,这里不多做介绍,只给出一个简单的示例:
- AlarmManager alarmMgr = (AlarmManager) getSystemService(Context.ALARM_SERVICE);
- Intent intent = new Intent(getApplicationContext(), TestActivity.class);
- PendingIntent pendIntent = PendingIntent.getActivity(getApplicationContext(),
- 0, intent, PendingIntent.FLAG_UPDATE_CURRENT);
- //5秒后发送广播,只发送一次
- int triggerAtTime = SystemClock.elapsedRealtime() + 5 * 1000;
- alarmMgr.set(AlarmManager.ELAPSED_REALTIME, triggerAtTime, pendIntent);
Alarm和Timer以及Handler在定时任务上的区别
相同点:
三者都可以完成定时任务,都支持一次性定时和循环定时(注:Handler可以间接支持循环定时任务)
不同点:
Handler和Timer在定时上是类似的,二者在系统休眠的情况下无法正常工作,定时任务不会按时触发。Alarm在系统休眠的情况下可以正常工作,并且还可以决定是否唤醒系统,同时Alarm在自身不启动的情况下仍能正常收到定时任务提醒,但是当系统重启或者应用被杀死的情况下,Alarm定时任务会被取消。另外,从Android4.4开始,Alarm事件默认采用非精准方式,即定时任务可能会有小范围的提前或延后,当然我们可以强制采用精准方式,而在此之前,Alarm事件都是精准方式。
Alarm与Binder的交互
Alarm由AlarmManager来管理,从使用方式来看,AlarmManager很简单,我们只要得到了AlarmManager的对象,就可以调用set方法来设定定时任务了,而如何得到AlarmManager对象呢?也很简单,AlarmManager
alarmMgr = (AlarmManager)
getSystemService(Context.ALARM_SERVICE);下面我们去看看AlarmManager的set方法,当然AlarmManager还有setRepeating方法,但是二者是类似的。为了更好地理解下面的内容,需要你了解AIDL,如果你还不了解,请参看android跨进程通信(IPC):使用AIDL。
code:AlarmManager#set
- public void set(int type, long triggerAtMillis, PendingIntent operation) {
- setImpl(type, triggerAtMillis, legacyExactLength(), 0, operation, null);
- }
- public void set(int type, long triggerAtMillis, long windowMillis, long intervalMillis,
- PendingIntent operation, WorkSource workSource) {
- setImpl(type, triggerAtMillis, windowMillis, intervalMillis, operation, workSource);
- }
- private void setImpl(int type, long triggerAtMillis, long windowMillis, long intervalMillis,
- PendingIntent operation, WorkSource workSource) {
- if (triggerAtMillis < 0) {
- /* NOTYET
- if (mAlwaysExact) {
- // Fatal error for KLP+ apps to use negative trigger times
- throw new IllegalArgumentException("Invalid alarm trigger time "
- + triggerAtMillis);
- }
- */
- triggerAtMillis = 0;
- }
- try {
- //定时任务实际上都有mService来完成,也就是说AlarmManager只是一个空壳
- //从下面的构造方法可以看出,这个mService是IAlarmManager类型的,而IAlarmManager是一个接口
- //如果大家了解AIDL就应该知道IAlarmManager应该是一个AIDL接口
- mService.set(type, triggerAtMillis, windowMillis, intervalMillis, operation,
- workSource);
- } catch (RemoteException ex) {
- }
- }
- AlarmManager(IAlarmManager service, Context ctx) {
- mService = service;
- final int sdkVersion = ctx.getApplicationInfo().targetSdkVersion;
- mAlwaysExact = (sdkVersion < Build.VERSION_CODES.KITKAT);
- }
说明:我对代码进行了注释,从注释可以看出,现在我们需要去找到这个mService,其实我已经帮大家找到了,它就是AlarmManagerService
Alarm机制分析
通过上面的一系列分析,我们知道AlarmManager的所有功能都是通过AlarmManagerService来完成的,在分析源码之前,我先来描述下Alarm的工作原理:从Android4.4开始,Alarm默认为非精准模式,除非显示指定采用精准模式。在非精准模式下,Alarm是批量提醒的,每个alarm根据其触发时间和最大触发时间的不同会被加入到不同的batch中,同一个batch的不同alarm是同时发生的,这样就无法实现精准闹钟,官方的解释是批量处理可以减少设备被唤醒次数以及节约电量,不过针对精准闹钟,官方预留的方法是setExact和setWindow,二者都是通过将时间窗口定义为0来实现精准闹钟的,因为时间窗口为0,意味着触发时间和最大触发时间是一样的,因为典型的情况下:最大触发时间=
触发时间 +
时间窗口。同时所有的batch是按开始时间升序排列的,在一个batch内部,不同的闹钟也是按触发时间升序排列的,所以闹钟的唤醒顺序是按照batch的排序依次触发的,而同一个batch中的alarm是同时触发的,可以用下面这个示意图来描述:
上图是示意图,系统中可以有多个batch,每个batch中可以有多个alarm。下面我们分析一下AlarmManagerService中的代码。其入口方法为set,set又调用了setImplLocked,所以我们直接看setImplLocked。
code:AlarmManagerService#setImplLocked
- private void setImplLocked(int type, long when, long whenElapsed, long maxWhen, long interval,
- PendingIntent operation, boolean isStandalone, boolean doValidate,
- WorkSource workSource) {
- /**创建一个alarm,其中各参数的含义如下:
- * type 闹钟类型 ELAPSED_REALTIME、RTC、RTC_WAKEUP等
- * when 触发时间 UTC类型,绝对时间,通过System.currentTimeMillis()得到
- * whenElapsed 相对触发时间,自开机算起,含休眠,通过SystemClock.elapsedRealtime()得到
- * maxWhen 最大触发时间
- * interval 触发间隔,针对循环闹钟有效
- * operation 闹钟触发时的行为,PendingIntent类型
- */
- Alarm a = new Alarm(type, when, whenElapsed, maxWhen, interval, operation, workSource);
- //根据PendingIntent删除之前已有的同一个闹钟
- removeLocked(operation);
- boolean reschedule;
- //尝试将alarm加入到合适的batch中,如果alarm是独立的或者无法找到合适的batch去容纳此alarm,返回-1
- int whichBatch = (isStandalone) ? -1 : attemptCoalesceLocked(whenElapsed, maxWhen);
- if (whichBatch < 0) {
- //没有合适的batch去容纳alarm,则新建一个batch
- Batch batch = new Batch(a);
- batch.standalone = isStandalone;
- //将batch加入mAlarmBatches中,并对mAlarmBatches进行排序:按开始时间升序排列
- reschedule = addBatchLocked(mAlarmBatches, batch);
- } else {
- //如果找到合适了batch去容纳此alarm,则将其加入到batch中
- Batch batch = mAlarmBatches.get(whichBatch);
- //如果当前alarm的加入引起了batch开始时间和结束时间的改变,则reschedule为true
- reschedule = batch.add(a);
- if (reschedule) {
- //由于batch的起始时间发生了改变,所以需要从列表中删除此batch并重新加入、重新对batch列表进行排序
- mAlarmBatches.remove(whichBatch);
- addBatchLocked(mAlarmBatches, batch);
- }
- }
- if (DEBUG_VALIDATE) {
- if (doValidate && !validateConsistencyLocked()) {
- Slog.v(TAG, "Tipping-point operation: type=" + type + " when=" + when
- + " when(hex)=" + Long.toHexString(when)
- + " whenElapsed=" + whenElapsed + " maxWhen=" + maxWhen
- + " interval=" + interval + " op=" + operation
- + " standalone=" + isStandalone);
- rebatchAllAlarmsLocked(false);
- reschedule = true;
- }
- }
- if (reschedule) {
- rescheduleKernelAlarmsLocked();
- }
- }
说明:通过上述代码可以看出,当我们创建一个alarm的时候,仅仅是将这个alarm加入到某个batch中,系统中有一个batch列表,专门用于存储所有的alarm。可是仅仅把alarm加入到batch中还不行,系统还必须提供一个类似于Looper的东西一直去遍历这个列表,一旦它发现有些alarm的时间已经到达就要把它取出来去执行。事实上,AlarmManagerService中的确有一个类似于Looper的东西去干这个事情,只不过它是个线程,叫做AlarmThread。下面看它的代码:
code:AlarmManagerService#AlarmThread
- private class AlarmThread extends Thread
- {
- public AlarmThread()
- {
- super("AlarmManager");
- }
- public void run()
- {
- //当前时间触发的alarm列表
- ArrayList<Alarm> triggerList = new ArrayList<Alarm>();
- while (true)
- {
- //jni方法,顾名思义,阻塞式方法,当有alarm的时候会被唤醒
- int result = waitForAlarm(mDescriptor);
- triggerList.clear();
- if ((result & TIME_CHANGED_MASK) != 0) {
- if (DEBUG_BATCH) {
- Slog.v(TAG, "Time changed notification from kernel; rebatching");
- }
- remove(mTimeTickSender);
- //将所有的alarm重新排序
- rebatchAllAlarms();
- mClockReceiver.scheduleTimeTickEvent();
- Intent intent = new Intent(Intent.ACTION_TIME_CHANGED);
- intent.addFlags(Intent.FLAG_RECEIVER_REPLACE_PENDING
- | Intent.FLAG_RECEIVER_REGISTERED_ONLY_BEFORE_BOOT);
- mContext.sendBroadcastAsUser(intent, UserHandle.ALL);
- }
- synchronized (mLock) {
- final long nowRTC = System.currentTimeMillis();
- final long nowELAPSED = SystemClock.elapsedRealtime();
- if (localLOGV) Slog.v(
- TAG, "Checking for alarms... rtc=" + nowRTC
- + ", elapsed=" + nowELAPSED);
- if (WAKEUP_STATS) {
- if ((result & IS_WAKEUP_MASK) != 0) {
- long newEarliest = nowRTC - RECENT_WAKEUP_PERIOD;
- int n = 0;
- for (WakeupEvent event : mRecentWakeups) {
- if (event.when > newEarliest) break;
- n++; // number of now-stale entries at the list head
- }
- for (int i = 0; i < n; i++) {
- mRecentWakeups.remove();
- }
- recordWakeupAlarms(mAlarmBatches, nowELAPSED, nowRTC);
- }
- }
- //这个方法会把batch列表中的第一个batch取出来然后加到触发列表中
- //当然,前提是此batch的开始时间不大于当前时间
- //同时,如果是循环闹钟,则会对下次任务进行再次定时
- triggerAlarmsLocked(triggerList, nowELAPSED, nowRTC);
- rescheduleKernelAlarmsLocked();
- // 遍历触发列表,发送PendingIntent
- for (int i=0; i<triggerList.size(); i++) {
- Alarm alarm = triggerList.get(i);
- try {
- if (localLOGV) Slog.v(TAG, "sending alarm " + alarm);
- //这里PendingIntent会被send,结果就是我们的定时任务被执行了
- alarm.operation.send(mContext, 0,
- mBackgroundIntent.putExtra(
- Intent.EXTRA_ALARM_COUNT, alarm.count),
- mResultReceiver, mHandler);
- // we have an active broadcast so stay awake.
- if (mBroadcastRefCount == 0) {
- setWakelockWorkSource(alarm.operation, alarm.workSource);
- mWakeLock.acquire();
- }
- final InFlight inflight = new InFlight(AlarmManagerService.this,
- alarm.operation, alarm.workSource);
- mInFlight.add(inflight);
- mBroadcastRefCount++;
- final BroadcastStats bs = inflight.mBroadcastStats;
- bs.count++;
- if (bs.nesting == 0) {
- bs.nesting = 1;
- bs.startTime = nowELAPSED;
- } else {
- bs.nesting++;
- }
- final FilterStats fs = inflight.mFilterStats;
- fs.count++;
- if (fs.nesting == 0) {
- fs.nesting = 1;
- fs.startTime = nowELAPSED;
- } else {
- fs.nesting++;
- }
- if (alarm.type == ELAPSED_REALTIME_WAKEUP
- || alarm.type == RTC_WAKEUP) {
- bs.numWakeup++;
- fs.numWakeup++;
- //针对能唤醒设备的闹钟,这里会做一些唤醒设备的事情
- ActivityManagerNative.noteWakeupAlarm(
- alarm.operation);
- }
- } catch (PendingIntent.CanceledException e) {
- if (alarm.repeatInterval > 0) {
- // This IntentSender is no longer valid, but this
- // is a repeating alarm, so toss the hoser.
- remove(alarm.operation);
- }
- } catch (RuntimeException e) {
- Slog.w(TAG, "Failure sending alarm.", e);
- }
- }
- }
- }
- }
- }
说明:上述代码中,AlarmThread会一直循环的跑着,一旦有新的alarm触发,它就会取出一个batch然后逐个发送PendingIntent,具体alarm的触发是由底层来完成的,我没法再继续分析下去。还有就是Alarm中有一些细节,我没有进行很具体的分析,实际上很简单,大家一看就懂。到此为止,Alarm机制的主要流程也分析完了。
总结
本文没有详细介绍如何使用Alarm,因为很简单,看一下官方文档或者网上搜一下,到处都是。关于Alarm,有一点需要强调一下:当手机重启或者应用被杀死的时候,Alarm会被删除,因此,如果想通过Alarm来完成长久定时任务是不可靠的,如果非要完成长久定时任务,可以这样:将应用的所有Alarm信息存到数据库中,每次应用启动的时候都重新注册Alarm并更新Alarm的触发时间,通过这种方式就不存在Alarm丢失的情况了。本文很长,耗时8个小时才完成的,感谢大家阅读本文,希望本文能给大家带来一点帮助。
Android中Alarm的机制的更多相关文章
- 浅析Android中的消息机制(转)
原博客地址:http://blog.csdn.net/liuhe688/article/details/6407225 在分析Android消息机制之前,我们先来看一段代码: public class ...
- 浅析Android中的消息机制(转)
在分析Android消息机制之前,我们先来看一段代码: public class MainActivity extends Activity implements View.OnClickListen ...
- Android中的Parcel机制 实现Bundle传递对象
Android中的Parcel机制 实现了Bundle传递对象 使用Bundle传递对象,首先要将其序列化,但是,在Android中要使用这种传递对象的方式需要用到Android Parc ...
- 浅析Android中的消息机制-解决:Only the original thread that created a view hierarchy can touch its views.
在分析Android消息机制之前,我们先来看一段代码: public class MainActivity extends Activity implements View.OnClickListen ...
- 浅析Android中的消息机制
在分析Android消息机制之前,我们先来看一段代码: public class MainActivity extends Activity implements View.OnClickListen ...
- 探索Android中的Parcel机制(上)
一.先从Serialize说起 我们都知道JAVA中的Serialize机制,译成串行化.序列化……,其作用是能将数据对象存入字节流其中,在须要时又一次生成对象.主要应用是利用外部存储设备保存对象状态 ...
- 重温Android中的消息机制
引入: 提到Android中的消息机制,大家应该都不陌生,我们在开发中不可避免的要和它打交道.从我们开发的角度来看,Handler是Android消息机制的上层接口.我们在平时的开发中只需要和Hand ...
- Android 中的广播机制
Android 中的广播机制 Android 中的广播,按照广播响应范围,可以分为应用内广播和全局广播.按照广播的接收方式,可以分为标准广播和有序广播. 广播的分类 响应范围 应用内广播:此类广播只能 ...
- 转: Android中的签名机制
转载请注明出处:http://www.blogjava.net/zh-weir/archive/2011/07/19/354663.html Android APK 签名比对 发布过Android应用 ...
随机推荐
- ADO.NET数据读取封装
public class sqlserver { //private string sqlstr = System.ConfigurationManager.ConnectionStrings[&qu ...
- Linux 服务器下多网卡的负载均衡
Linux 服务器下多网卡负载均衡的实现 一.引言 现今几乎各行各业内部都建立了自己的服务器,由于服务器的特殊地位,它的可靠性.可用性及其 I/O 速度就显得非常的重要, 保持服务器的高可用 ...
- MVC5发展历程,从MVC2谈起
目前,MVC已经发布了5个版本,不包括一些临时的版本,为了更好的了解MVC5,知道MVC的发展历程是非常重要的.本篇随笔主要讲解3个版本的内容及其新特性. 1.MVC 2,发布日期:2010年3月 部 ...
- mybatis集成到spring理解
- OpenGL常见错误之——glut.h文件的函数无法正常连接
glut.h文件的函数无法正常连接,典型的错误如下:------ 已启动生成: 项目: gears, 配置: Debug Win32 ------1>正在链接...1>GEARS.obj ...
- git pull 、git fetch、 git clone
git clone 代表从远程克隆过来包括所有的版本信息 git fetch是从远程获取最新的版本 git pull相当于 git fetch 然后再git merge
- 学习《人工智能一种现代的方法(第3版)》中文PDF+英文PDF
学习人工智能概论时,推荐看看<人工智能:一种现代的方法(第3版)>,最权威.最经典的人工智能教材,已被全世界100多个国家的1200多所大学用作教材. 全面性以及结构的安排还是不错的,值得 ...
- iscsi共享存储的简单配置和应用
1.环境介绍 SCSI(Small Computer System Interface)是块数据传输协议,在存储行业广泛应用,是存储设备最基本的标准协议.从根本上说,iSCSI协议是一种利用IP网络来 ...
- 实现外网訪问局域网内的SVN——花生壳+visiualSVN实现外网訪问局域网内的SVN(三)
经过前两篇文章.到眼下为止,我们已经获取了外网域名而且搭建好了SVN server.接下来,我们就总结一下怎样实践实现一下訪问局域网. 1.安装VisiualSVN Server(可见:http:// ...
- HDU 4405 概率期望DP
有 0到 n 个格子.掷骰子走路,求出到终点的数学期望,有飞行的路线. dp[i] 存储在i位置走到终点的期望. 转移方程dp[i]=(dp[i+1] ----> dp[i+6])/6+1; 有 ...