深度神经网络(DNN)
深度神经网络(DNN)
深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。
1. 从感知机到神经网络
在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图:
输出和输入之间学习到一个线性关系,得到中间输出结果:
接着是一个神经元激活函数:
从而得到我们想要的输出结果1或者-1。
这个模型只能用于二元分类,且无法学习比较复杂的非线性模型,因此在工业界无法使用。
而神经网络则在感知机的模型上做了扩展,总结下主要有三点:
1)加入了隐藏层,隐藏层可以有多层,增强模型的表达能力,如下图实例,当然增加了这么多隐藏层模型的复杂度也增加了好多。
2)输出层的神经元也可以不止一个输出,可以有多个输出,这样模型可以灵活的应用于分类回归,以及其他的机器学习领域比如降维和聚类等。多个神经元输出的输出层对应的一个实例如下图,输出层现在有4个神经元了。
3) 对激活函数做扩展,感知机的激活函数是sign(z)sign(z),虽然简单但是处理能力有限,因此神经网络中一般使用的其他的激活函数,比如我们在逻辑回归里面使用过的Sigmoid函数,即:
还有后来出现的tanx, softmax,和ReLU等。通过使用不同的激活函数,神经网络的表达能力进一步增强。对于各种常用的激活函数,我们在后面再专门讲。
2. DNN的基本结构
上一节我们了解了神经网络基于感知机的扩展,而DNN可以理解为有很多隐藏层的神经网络。这个很多其实也没有什么度量标准, 多层神经网络和深度神经网络DNN其实也是指的一个东西,当然,DNN有时也叫做多层感知机(Multi-Layer perceptron,MLP), 名字实在是多。后面我们讲到的神经网络都默认为DNN。
从DNN按不同层的位置划分,DNN内部的神经网络层可以分为三类,输入层,隐藏层和输出层,如下图示例,一般来说第一层是输出层,最后一层是输出层,而中间的层数都是隐藏层。
层与层之间是全连接的,也就是说,第i层的任意一个神经元一定与第i+1层的任意一个神经元相连。虽然DNN看起来很复杂,但是从小的局部模型来说,还是和感知机一样,即一个线性关系z=∑wixi+bz=∑wixi+b加上一个激活函数σ(z)σ(z)。
由于DNN层数多,则我们的线性关系系数ww和偏倚bb的数量也就是很多了。具体的参数在DNN是如何定义的呢?
首先我们来看看线性关系系数ww的定义。以下图一个三层的DNN为例,第二层的第4个神经元到第三层的第2个神经元的线性系数定义为w324w243。上标3代表线性系数ww所在的层数,而下标对应的是输出的第三层索引2和输入的第二层索引4。你也许会问,为什么不是w342w423, 而是w324w243呢?这主要是为了便于模型用于矩阵表示运算,如果是w324w243而每次进行矩阵运算是wTx+bwTx+b,需要进行转置。将输出的索引放在前面的话,则线性运算不用转置,即直接为wx+bwx+b。总结下,第l−1l−1层的第k个神经元到第ll层的第j个神经元的线性系数定义为wljkwjkl。注意,输入层是没有ww参数的。
再来看看偏倚bb的定义。还是以这个三层的DNN为例,第二层的第三个神经元对应的偏倚定义为b23b32。其中,上标2代表所在的层数,下标3代表偏倚所在的神经元的索引。同样的道理,第三个的第一个神经元的偏倚应该表示为b31b13。同样的,输入层是没有偏倚参数bb的。
3. DNN前向传播算法数学原理
在上一节,我们已经介绍了DNN各层线性关系系数ww,偏倚bb的定义。假设我们选择的激活函数是σ(z)σ(z),隐藏层和输出层的输出值为aa,则对于下图的三层DNN,利用和感知机一样的思路,我们可以利用上一层的输出计算下一层的输出,也就是所谓的DNN前向传播算法。
对于第二层的的输出a21,a22,a23a12,a22,a32,我们有:
对于第三层的的输出a31a13,我们有:
将上面的例子一般化,假设第l−1l−1层共有m个神经元,则对于第ll层的第j个神经元的输出aljajl,我们有:
其中,如果l=2l=2,则对于的a1kak1即为输入层的xkxk。
从上面可以看出,使用代数法一个个的表示输出比较复杂,而如果使用矩阵法则比较的简洁。假设第l−1l−1层共有m个神经元,而第ll层共有n个神经元,则第ll层的线性系数ww组成了一个n×mn×m的矩阵WlWl, 第ll层的偏倚bb组成了一个n×1n×1的向量blbl , 第l−1l−1层的的输出aa组成了一个m×1m×1的向量al−1al−1,第ll层的的未激活前线性输出zz组成了一个n×1n×1的向量zlzl, 第ll层的的输出aa组成了一个n×1n×1的向量alal。则用矩阵法表示,第l层的输出为:
这个表示方法简洁漂亮,后面我们的讨论都会基于上面的这个矩阵法表示来。
4. DNN前向传播算法
有了上一节的数学推导,DNN的前向传播算法也就不难了。所谓的DNN的前向传播算法也就是利用我们的若干个权重系数矩阵WW,偏倚向量bb来和输入值向量xx进行一系列线性运算和激活运算,从输入层开始,一层层的向后计算,一直到运算到输出层,得到输出结果为值。
输入: 总层数L,所有隐藏层和输出层对应的矩阵WW,偏倚向量bb,输入值向量xx
输出:输出层的输出aLaL
1) 初始化a1=xa1=x
2) for l=2l=2 to LL, 计算:
最后的结果即为输出aLaL。
5. DNN前向传播算法小结
单独看DNN前向传播算法,似乎没有什么大用处,而且这一大堆的矩阵WW,偏倚向量bb对应的参数怎么获得呢?怎么得到最优的矩阵WW,偏倚向量bb呢?这个我们在讲DNN的反向传播算法时再讲。而理解反向传播算法的前提就是理解DNN的模型与前向传播算法。这也是我们这一篇先讲的原因。
(欢迎转载,转载请注明出处。欢迎沟通交流: pinard.liu@ericsson.com)
参考资料:
1) Neural Networks and Deep Learning by By Michael Nielsen
2) Deep Learning, book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
深度神经网络(DNN)的更多相关文章
- 深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用
深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能 ...
- 一天搞懂深度学习-训练深度神经网络(DNN)的要点
前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...
- 深度神经网络(DNN)模型与前向传播算法
深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结. 1. 从感知机 ...
- 神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId ...
- 云中的机器学习:FPGA 上的深度神经网络
人工智能正在经历一场变革,这要得益于机器学习的快速进步.在机器学习领域,人们正对一类名为“深度学习”算法产生浓厚的兴趣,因为这类算法具有出色的大数据集性能.在深度学习中,机器可以在监督或不受监督的方式 ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- 深度神经网络(DNN)反向传播算法(BP)
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...
- 深度神经网络(DNN)损失函数和激活函数的选择
在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结.里面使用的损失函数是均方差,而激活函数是Sigmoid.实际上DNN可以使用的损失函数和激活函数不少.这些 ...
- 深度神经网络(DNN)的正则化
和普通的机器学习算法一样,DNN也会遇到过拟合的问题,需要考虑泛化,这里我们就对DNN的正则化方法做一个总结. 1. DNN的L1&L2正则化 想到正则化,我们首先想到的就是L1正则化和L2正 ...
随机推荐
- FTP、WEB虚拟目录作用
随风原文FTP.WEB虚拟目录作用 在 IIS中,双击您要为之添加虚拟目录的服务以显示其属性表. 单击“目录”选项卡. 单击“添加”. 单击“浏览”从“目录”框中选择一个目录. ...
- MongoDb 查询时常用方法
Query.All("name", "a", "b");//通过多个元素来匹配数组Query.And(Query.EQ("name ...
- Linux system函数返回值
例: status = system("./test.sh"); 1.先统一两个说法: (1)system返回值:指调用system函数后的返回值,比如上例中status为syst ...
- gdb查看线程堆栈信息
查看堆栈:gdb -quiet -batch -ex='thread apply all bt' -p pid查看运行位置:gdb -quiet -batch -ex='thread apply al ...
- h5 video 点击自动全屏
加上如下属性 https://blog.csdn.net/weixin_40974504/article/details/79639478 可阻止自动全屏播放,感谢 https://blog.csdn ...
- Xamarin Android 绑定 UVCCamera
这段时间工作上需要在Android设备上读取视频.摄像头用的是奥比中光的3D摄像头.我手上的摄像头的彩色通道使用的的UVC协议的. 在Xamarin上可用的UVC的封装基本上没有,只有一个小伙在Xam ...
- [Recompose] Render Nothing in Place of a Component using Recompose
Learn how to use the ‘branch’ and ‘renderNothing’ higher-ordercomponents to render nothing when a ce ...
- ajax实现注册用户名时动态显示用户名是否已经被注册(1、ajax可以实现我们常见的注册用户名动态判断)(2、jquery里面的ajax也是类似我们这样封装了的函数)
ajax实现注册用户名时动态显示用户名是否已经被注册(1.ajax可以实现我们常见的注册用户名动态判断)(2.jquery里面的ajax也是类似我们这样封装了的函数) 一.总结 1.ajax可以实现我 ...
- Java中String推断相等equals与==的差别以及StringBuilder的equals
Java中String类型具有一个equals的方法能够用于推断两种字符串是否相等,可是这样的相等又与运算符==所推断的"相等"有所不同,接下来进行分析,结论由程序进行验证 Str ...
- 关于如何在Sublime下安装插件
安装插件的两种方式 通过Package Control安装 不能安装 手工安装 安装插件的两种方式 在sublime下安装插件有两种方式,一种是通过package control来进行安装,另一种呢就 ...