通过Elasticsearch使用的你的数据

Elasticsearch 系列导航

elasticsearch 与 elasticsearch-head 的安装

ElasticSearch Index API && Mapping

在ElasticSearch中使用 IK 中文分词插件

ElasticSearch 基本概念

Nest客户端的基本使用方法

持续更新中

正文

假设你已经有一份数据保存在Elasticsearch里,类似于下面这种schema,如果没有参考导入测试数据

1
2
3
4
5
6
7
8
9
10
11
12
13
{
    "account_number": 0,
    "balance": 16623,
    "firstname""Bradshaw",
    "lastname""Mckenzie",
    "age": 29,
    "gender""F",
    "address""244 Columbus Place",
    "employer""Euron",
    "email""bradshawmckenzie@euron.com",
    "city""Hobucken",
    "state""CO"
}

那么我们接下来就可以 过滤,搜索,聚合来获取到我们想要的数据。

Elasticsearch提供了一套Json风格的领域特定语言来帮助查询,被称为Query DSL.

搜索通过在URL结尾加_search来指定,具体查询提交通过Request Body来指定,

比如下面的Request Body:

query: 用来指定查询条件

from:从第几个开始取

size:取多少条记录,默认10条,比如这个例子有13条记录满足条件,但是只返回1条记录

sort:用来指定排序规则

OK,通过刚才的实验,我们对查询有了一个基本的认识,下面让我们来继续认识更加有趣的查询:

  1. 减少返回字段的个数(默认情况下是返回一个文档的所有字段信息)

    1
    2
    3
    4
    {
      "query": { "match_all": {} },
      "_source": ["account_number""balance"]
    }
  2. 返回account_number等于20的account
    1
    2
    3
    {
      "query": { "match": { "account_number": 20 } }
    }

    match是一个模糊匹配,但是由于account_number是long类型,所以这里当做精确匹配来过滤

  3. 返回address字段中包含mill的account
    1
    2
    3
    {
      "query": { "match": { "address""mill" } }
    }

    由于address是text类型,所以这里说的是包含mill而不是等于mill.

  4. 返回address字段中包含"mill" 或 "lane"的account
    1
    2
    3
    {
      "query": { "match": { "address""mill lane" } }
    }

    由于address是text类型,而且"mill lane"这里在查询的时候被当作两个词来分别进行查询

  5. 返回address字段中包含"mill lane"的account

    这里使用match_phrase查询类型,把"mill lane"当作一个整体来查询

    1
    2
    3
    {
      "query": { "match_phrase": { "address""mill lane" } }
    }

     

  6. 返回address字段中同时包含"mill" 和 "lane"的account
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    {
      "query": {
        "bool": {
          "must": [
            "match": { "address""mill" } },
            "match": { "address""lane" } }
          ]
        }
      }
    }

    这里使用了bool查询语句,它允许我们组合多个小的查询一起来完成稍微复杂的查询,bool must 要求所有子查询返回true,所有子查询之间可以理解为一个and的操作。

  7. 返回address字段中包含"mill" 或 "lane"的account

    bool should 要求子查询中的任一个满足条件,可以理解为或的关系

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    {
      "query": {
        "bool": {
          "should": [
            "match": { "address""mill" } },
            "match": { "address""lane" } }
          ]
        }
      }
    }
  8. 返回address字段中既不包含"mill" 也不包含 "lane"的account

    bool must_not子句之间是或的关系

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    {
      "query": {
        "bool": {
          "must_not": [
            "match": { "address""mill" } },
            "match": { "address""lane" } }
          ]
        }
      }
    }
  9. 返回年龄等于40 且不住在ID地区的account
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    {  "query": {
        "bool": {
          "must": [
            "match": { "age""40" } }
          ],
          "must_not": [
            "match": { "state""ID" } }
          ]
        }
      }
    }

我们可以同时联合mustshould, and must_not子句在一个bool语句内,

也可以继续在bool子句下面继续嵌套使用bool子句来完成更加复杂的查询需求。

 Filter 过滤

在返回的结果中有一个_score字段,score是一个数值,表示查询条件和这个文档的相关度,分数越高,说明某个文档的相关度越高,

反之,相关度越低,但是查询 并不总是产生分数,尤其当你使用过滤子句来过滤文档的时候,Elasticsearch会自动检测这些场景,

自动优化查询,让他不要去计算无用的分数,之前我们使用的bool查询也支持filter子句,

例如我们想获取账户余额大于等于20000 小于等于30000的账户信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
{
  "query": {
    "bool": {
      "must": { "match_all": {} },
      "filter": {
        "range": {
          "balance": {
            "gte": 20000,
            "lte": 30000
          }
        }
      }
    }
  }
}

上面的这个例子其实挺好理解的,所有在这个range范围内的文档都具有相等的匹配度,

没有哪一个文档比其他的文档匹配度更高,要么在这个范围内,要么不在,所以相关度是相等的,

就没有必要再去计算这个score.

Aggregations聚合

聚合允许你给你的数据分组并获取他们的统计信息,你可以把它和SQL里面的goup by 以及SQL的聚合函数联系起来,

在Elasticsearch,你可以在一个响应里同时返回聚合信息和结果明细,

比如我们使用state来给所有的accounts分组,默认返回前10条聚合记录,顺序按照组内文档数量的倒序排列

1
2
3
4
5
6
7
8
9
10
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field""state.keyword"
      }
    }
  }
}

你可以结合下面的SQL语句更好理解上面的语句

SELECT state, COUNT(*) FROM bank GROUP BY state ORDER BY COUNT(*) DESC
部分返回结果 如下显示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
{
  "took": 29,
  "timed_out"false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits" : {
    "total" : 1000,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "group_by_state" : {
      "doc_count_error_upper_bound": 20,
      "sum_other_doc_count": 770,
      "buckets" : [ {
        "key" "ID",
        "doc_count" : 27
      }, {
        "key" "TX",
        "doc_count" : 27
      }, {
        "key" "AL",
        "doc_count" : 25
      }, {
        "key" "MD",
        "doc_count" : 25
      }, {
        "key" "TN",
        "doc_count" : 23
      }, {
        "key" "MA",
        "doc_count" : 21
      }, {
        "key" "NC",
        "doc_count" : 21
      }, {
        "key" "ND",
        "doc_count" : 21
      }, {
        "key" "ME",
        "doc_count" : 20
      }, {
        "key" "MO",
        "doc_count" : 20
      } ]
    }
  }
}

你可以观察到,上面的聚合我们设置size=0,不去显示符合条件的原始记录,

因为我们这次仅仅需要聚合的结果信息,如果你也需要原始记录信息,那么你可以重新指定size的大小

下面这个例子我们来求余额的平均值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field""state.keyword"
      },
      "aggs": {
        "average_balance": {
          "avg": {
            "field""balance"
          }
        }
      }
    }
  }
}

返回如下的结果,可以看到这里我们在group_by_state里面嵌套使用了average_balance,这是一种比较通用的做法,

你可以在任意聚合内嵌套任意聚合来获取需要的统计信息。

下面这个例子演示根据年龄组来分组,然后根据性别来分组最后求账户余额的平均值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
{
  "size": 0,
  "aggs": {
    "group_by_age": {
      "range": {
        "field""age",
        "ranges": [
          {
            "from": 20,
            "to": 30
          },
          {
            "from": 30,
            "to": 40
          },
          {
            "from": 40,
            "to": 50
          }
        ]
      },
      "aggs": {
        "group_by_gender": {
          "terms": {
            "field""gender.keyword"
          },
          "aggs": {
            "average_balance": {
              "avg": {
                "field""balance"
              }
            }
          }
        }
      }
    }
  }
}

下面是年龄组分组 计算聚合的部分返回结果:


 
 
分类: NoSql

ES数据的更多相关文章

  1. es 数据 导出 到 MySQL

    暂时没有找到直接 导出到 mysql 数据库的工具 或者项目 目前实现思路: 使用 elasticdump  工具 实现 从 es 数据 导出到 json 文件 ,然后 使用 脚本程序 操作 改 js ...

  2. es数据增删改查

    设置最大查询条数 curl -XPUT 'http://10.121.8.5:9200/zdl_mx_shzt_ztdf/_settings' -d'{"index":{" ...

  3. ES数据架构与关系数据库Mysql

    ES数据架构的主要概念(与关系数据库Mysql对比) MySQL ElasticSearch Database Index Table Type Row Document Column Field S ...

  4. ES数据导入导出

    ES数据导入导出   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...

  5. MySQL 到 ES 数据实时同步技术架构

    MySQL 到 ES 数据实时同步技术架构 我们已经讨论了数据去规范化的几种实现方式.MySQL 到 ES 数据同步本质上是数据去规范化多种实现方式中的一种,即通过"数据迁移同步" ...

  6. 你的ES数据备份了吗?

    前言: 无论使用哪种存储软件,定期的备份数据都是重中之重,在使用ElasticSearch的时候,随着数据日益积累,存放es数据的磁盘空间也捉襟见肘, 此时对于业务功能使用不到的索引数据,又不能直接删 ...

  7. ES数据-MySql处理Date类型的数据导入处理

    用ES的小伙伴们,相信大家都遇到过Mapping处理Date类型的数据头疼问题吧. 不用头疼了,我来给你提供一种解决方案: 1.Maping定义为: {  "mappings": ...

  8. 【原创】大数据基础之ElasticSearch(4)es数据导入过程

    1 准备analyzer 内置analyzer 参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis- ...

  9. elasticsearch-dump 迁移es数据 (elasticdump)

    elasticsearch 部分查询语句 # 获取集群的节点列表: curl 'localhost:9200/_cat/nodes?v' # 列出所有索引: curl 'localhost:9200/ ...

  10. Spark sql读取数据库和ES数据进行处理代码

    读取数据库数据和ElasticSearch数据进行连接处理 import java.util.HashMap; import java.util.List; import java.util.Map; ...

随机推荐

  1. Day1:变量

    一.变量用来干嘛的 用来存东西的,方便后面调用 二.如何定义变量 name = "Hiuhung Wan" 变量名 = 值,一个等号是赋值号,右边的值赋值给左边 三.变量的一些用法 ...

  2. 动态规划 —— 求解通配符问题(wildcard)

    he?p help, heap, √ hellp, × *p*(必须包含 p,左右随意) help, papa, √ hello × *bb*(必须包含连续的两个 bb,左右随意) babbc √ 1 ...

  3. Android LoaderManager与CursorLoader用法

    一.基本概念 1.LoaderManager LoaderManager用来负责管理与Activity或者Fragment联系起来的一个或多个Loaders对象. 每个Activity或者Fragme ...

  4. UVA 10917 Walk Through the Forest SPFA

    uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem= ...

  5. go get请求 json字符串转为结构体

    package main import ( "io/ioutil" "fmt" "net/http" "encoding/json ...

  6. 27、从零写UVC驱动之分析数据传输(设置ubuntu通过串口打印,指定打印到文件,ubuntu切换root用户)

    A. 设置ubuntu让它从串口0输出printk信息a. 设置vmware添加serial port, 使用文件作为串口(在vmware中设置,文件是保存在windows中)b. 启动ubuntu, ...

  7. 三、链路追踪系统 zipkin

    一.构建项目 用到的依赖直接看pom.xml的注释吧 <?xml version="1.0" encoding="UTF-8"?> <proj ...

  8. [Node] Convert CommonJS Requires to ES6 Imports

    In this lesson we'll use cjs-to-es6 to convert CommonJS requires to ES6 imports. We'll also show how ...

  9. QAtomicInt支持四种类型的操作,Relaxed、Acquired、Release、Ordered

    Memory Ordering   Background 很久很久很久以前,CPU忠厚老实,一条一条指令的执行我们给它的程序,规规矩矩的进行计算和内存的存取. 很久很久以前, CPU学会了Out-Of ...

  10. Multi-Tenancy模式,基础服务大规模扩张的时候,是应该推进了。

    这不是技术介绍.这是我要推进的工作,记在这里.服务的对象太多,必须隔离为不同租户了.