手动博客搬家: 本文发表于20180716 10:53:12, 原地址https://blog.csdn.net/suncongbo/article/details/81061500

给定一个\(n\)个点\(m\)条边的有向图(不一定无环),每个点上有一个小写字母。要找一条路径,使得路径上出现次数最多的字母出现的次数最多。如果答案为无穷大输出-1.

题解:何时无穷大?有环的时候可以不停地走环,统计无限次答案,答案为无穷大。因此,对于-1的情况,只需要判一下环即可。

对于有限大的情况,令\(dp[i][c]\)表示以第\(i\)个节点结束的路径中含有\(c\)这个字母次数的最大值。则有\(dp[i][c]=\max_{j\in ind[i]}{dp[j][c]}+[a[i]==c]\), \(a[i]\)为第\(i\)个点的字母。

然后就可以得到答案了。时间复杂度\(O(mS)\), S为字符集大小26.

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N = 3e5;
const int S = 26;
struct Edge
{
int v,nxt; bool used;
} e[N+3];
int fe[N+2];
char s[N+2];
int a[N+2];
int dfn[N+2],low[N+2];
int sta[N+2];
bool ins[N+2],vis[N+2];
int dp[N+2][S+2];
int ind[N+2];
int que[N+2];
int n,m,tp,mx,head,tail,tot; void addedge(int u,int v)
{
e[++m].v = v; e[m].nxt = fe[u]; fe[u] = m;
} void Tarjan(int u)
{
dfn[u] = low[u] = ++tp; sta[tp] = u; ins[u] = true;
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(!dfn[v]) {Tarjan(v); low[u] = min(low[v],low[u]);}
else if(ins[v]) low[u] = min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
int tmp = 1;
while(sta[tp]!=u && tp>0)
{
int v = sta[tp];
ins[v] = false;
tp--; tmp++;
}
ins[u] = false; tp--;
if(tmp>mx) mx = tmp;
}
} int main()
{
int m0; m = 0;
scanf("%d%d",&n,&m0);
scanf("%s",s+1); for(int i=1; i<=n; i++) a[i] = (int)s[i]-'a'+1;
for(int i=1; i<=m0; i++) {int x,y; scanf("%d%d",&x,&y); addedge(x,y); if(x==y) {printf("-1\n"); return 0;}}
for(int i=1; i<=n; i++) {if(!dfn[i]) Tarjan(i);}
if(mx>1) {printf("-1\n"); return 0;}
for(int i=1; i<=n; i++)
{
for(int j=fe[i]; j; j=e[j].nxt) ind[e[j].v]++;
}
tot = 0;
for(int i=1; i<=n; i++) dp[i][a[i]] = 1;
while(tot<n)
{
for(int j=1; j<=n; j++)
{
if(ind[j]==0 && vis[j]==false)
{
tail++;
que[head] = j; vis[j] = true; tot++;
while(head<=tail)
{
int c = que[head++];
for(int i=fe[c]; i; i=e[i].nxt)
{
if(e[i].used) continue;
e[i].used = true;
ind[e[i].v]--;
for(int k=1; k<=S; k++)
{
if(a[e[i].v]==k) dp[e[i].v][k] = max(dp[e[i].v][k],dp[c][k]+1);
else dp[e[i].v][k] = max(dp[e[i].v][k],dp[c][k]);
}
if(ind[e[i].v]==0 && vis[e[i].v]==false)
{
vis[e[i].v] = true; tot++;
que[++tail] = e[i].v;
}
}
}
}
}
}
int ans = 0;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=S; j++) ans = max(ans,dp[i][j]);
}
printf("%d\n",ans);
return 0;
}

Codeforces 919D Substring (拓扑图DP)的更多相关文章

  1. Codeforces 919D - Substring

    919D - Substring 思路: 拓扑排序判环+DAG上dp+记忆化搜索 状态:dp[i][j]表示以i为起点的路径中j的最大出现次数 初始状态:dp[i][j]=1(i have no so ...

  2. Codeforces 919D Substring (拓扑排序+树形dp)

    题目:Substring 题意:给你一个有向图, 一共有n个节点 , m条变, 一条路上的价值为这个路上出现过的某个字符最多出现次数, 现求这个最大价值, 如果价值可以无限大就输出-1. 题解:当这个 ...

  3. Codeforces 919D Substring 【拓扑排序】+【DP】

    <题目链接> 题目大意:有一个具有n个节点,m条边的有向图,每个点对应一个小写字母,现在给出每个顶点对应的字母以及有向边的连接情况,求经过的某一条路上相同字母出现的最多次数.如果次数无限大 ...

  4. CodeForces - 919D Substring (拓扑排序+dp)

    题意:将一个字符串上的n个字符视作点,给出m条有向边,求图中路径上最长出现的相同字母数. 分析:首先如果这张图中有环,则可以取无限大的字符数,在求拓扑排序的同时可以确定是否存在环. 之后在拓扑排序的结 ...

  5. Codeforces 919D Substring ( 拓扑排序 && DAG上的DP )

    题意 : 给出含有 N 个点 M 条边的图(可能不连通或者包含环),每个点都标有一个小写字母编号,然后问你有没有一条路径使得路径上重复字母个数最多的次数是多少次,例如图上有条路径的顶点标号顺序是  a ...

  6. 微软2016校园招聘在线笔试 B Professor Q's Software [ 拓扑图dp ]

    传送门 题目2 : Professor Q's Software 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Professor Q develops a new s ...

  7. [Codeforces 1201D]Treasure Hunting(DP)

    [Codeforces 1201D]Treasure Hunting(DP) 题面 有一个n*m的方格,方格上有k个宝藏,一个人从(1,1)出发,可以向左或者向右走,但不能向下走.给出q个列,在这些列 ...

  8. Codeforces 919D:Substring(拓扑排序+DP)

    D. Substring time limit: per test3 seconds memory limit: per test256 megabytes inputstandard: input ...

  9. CodeForces 163A Substring and Subsequence dp

    A. Substring and Subsequence 题目连接: http://codeforces.com/contest/163/problem/A Description One day P ...

随机推荐

  1. EarthWarrior3D游戏ios源代码

    这是一款不错的ios源代码源代码,EarthWarrior3D游戏源代码. 而且游戏源码支持多平台. 适用于cocos v2.1.0.0版本号 源代码下载: http://code.662p.com/ ...

  2. Oracle VM VirtualBox使用的注意事项

    Oracle VM VirtualBox使用的注意事项 Oracle VM VirtualBox 上克隆虚拟机 方法一 1.复制源虚拟里的 vdi 文件到新的目录 2.命令行进入 Oracle VM  ...

  3. 我在SharePoint行业的从业经历(二)

     本文是我的SharePoint从业经历的第二篇,第一篇请參考 我在SharePoint行业的从业经历(一) 做完那个项目之后.对SharePoint 2003有了一些认识. 可是后来几年我就没在 ...

  4. c++ 数据预处理(数据去噪,归一化)

    正态分布3σ原则,把3倍方差之外的点设想为噪声数据来排除. 归一化,将数据经过处理之后限定到一定的范围内,一般都会将数据限定到[0,1]. #include <iostream>#incl ...

  5. 线性回归(最小二乘法、批量梯度下降法、随机梯度下降法、局部加权线性回归) C++

    We turn next to the task of finding a weight vector w which minimizes the chosen function E(w). Beca ...

  6. 713C

    费用流 并没有想出来构图方法 我们设立源汇,其实我们关心的是相邻两个值的差值,如果差值小于0说明需要长高,那么向汇点连边差值,说明需要修改,如果差大于零,那么由源点连边差值,说明可以提供修改空间,再由 ...

  7. APP加固反调试(Anti-debugging)技术点汇总

    0x00 时间相关反调试 通过计算某部分代码的执行时间差来判断是否被调试,在Linux内核下可以通过time.gettimeofday,或者直接通过sys call来获取当前时间.另外,还可以通过自定 ...

  8. pinpoint 磁盘不足的坑

    观察 pinpoint hbase 数据存储目录default中各个表的大小 TraceV2 15G ApplicationTraceIndex 15G major_compact的操作目的 合并文件 ...

  9. JS 有趣的eval优化输入验证

    //eval就是计算字符串[可以放任何js代码]里的值 . var str1='12+3'; eval(str1); . var str2='[1,2,3]'; eval(str2[]); .eval ...

  10. codechef MAY18 div2 部分题解

    T1 https://www.codechef.com/MAY18B/problems/RD19 刚开始zz了,其实很简单. 删除一个数不会使gcd变小,于是就只有0/1两种情况 T2 https:/ ...