前6行是优先队列,后6行是C#原生的queue

Min Heap Priority Queue

Works withC# version 3.0+/DotNet 3.5+

The above code is not really a true Priority Queue as it does not allow duplicate keys; also, the SortedList on which it is based does not have O(log n) insertions and removals for random data as a true Priority Queue does. The below code implements a true Min Heap Priority Queue:

namespace PriorityQ {
  using KeyT = UInt32;
  using System;
  using System.Collections.Generic;
  using System.Linq;
  class Tuple<K, V> { // for DotNet 3.5 without Tuple's
    public K Item1; public V Item2;
    public Tuple(K k, V v) { Item1 = k; Item2 = v; }
    public override string ToString() {
      return "(" + Item1.ToString() + ", " + Item2.ToString() + ")";
    }
  }
  class MinHeapPQ<V> {
    private struct HeapEntry {
      public KeyT k; public V v;
      public HeapEntry(KeyT k, V v) { this.k = k; this.v = v; }
    }
    private List<HeapEntry> pq;
    private MinHeapPQ() { this.pq = new List<HeapEntry>(); }
    ; } }
    private int sz {
      get {
        var cnt = pq.Count;
        ) ?  : cnt - ;
      }
    }
    private Tuple<KeyT, V> pkmn {
      get {
        ) return null;
        else {
          ];
          return new Tuple<KeyT, V>(mn.k, mn.v);
        }
      }
    }
    private void psh(KeyT k, V v) { // add extra very high item if none
      ) pq.Add(new HeapEntry(UInt32.MaxValue, v));
      ]); // copy bottom item...
      ; ni > ; i >>= , ni >>= ) {
        ];
        ] = t; else break;
      }
      pq[i - ] = new HeapEntry(k, v);
    }
    private void siftdown(KeyT k, V v, int ndx) {
      ; var i = ndx;
      ; ni < cnt; ni = ni + ni + ) {
        ].k;
        var nk = k;
        if (k > lk) { i = ni; nk = lk; }
        ; i = ni; }
        if (i != oi) pq[oi] = pq[i]; else break;
      }
      pq[i] = new HeapEntry(k, v);
    }
    private void rplcmin(KeyT k, V v) {
      ) siftdown(k, v, );
    }
    private void dltmin() {
      ;
      ) pq.Clear();
      else {
        var lkv = pq[lsti];
        pq.RemoveAt(lsti); siftdown(lkv.k, lkv.v, );
      }
    }
    private void reheap(int i) {
      ;
      if (lfti < sz) {
        ; reheap(lfti); reheap(rghti);
        var ckv = pq[i]; siftdown(ckv.k, ckv.v, i);
      }
    }
    private void bld(IEnumerable<Tuple<KeyT, V>> sq) {
      var sqm = from e in sq
                select new HeapEntry(e.Item1, e.Item2);
      pq = sqm.ToList<HeapEntry>();
      var sz = pq.Count;
      ) {
        ];
        pq.Add(new HeapEntry(KeyT.MaxValue, lkv.v));
        reheap();
      }
    }
    private IEnumerable<Tuple<KeyT, V>> sq() {
      return from e in pq
             where e.k != KeyT.MaxValue
             select new Tuple<KeyT, V>(e.k, e.v); }
    private void adj(Func<KeyT, V, Tuple<KeyT, V>> f) {
      ;
      ; i < cnt; ++i) {
        var e = pq[i];
        var r = f(e.k, e.v);
        pq[i] = new HeapEntry(r.Item1, r.Item2);
      }
      reheap();
    }
    public static MinHeapPQ<V> empty { get { return new MinHeapPQ<V>(); } }
    public static bool isEmpty(MinHeapPQ<V> pq) { return pq.mt; }
    public static int size(MinHeapPQ<V> pq) { return pq.sz; }
    public static Tuple<KeyT, V> peekMin(MinHeapPQ<V> pq) { return pq.pkmn; }
    public static MinHeapPQ<V> push(KeyT k, V v, MinHeapPQ<V> pq) {
      pq.psh(k, v); return pq; }
    public static MinHeapPQ<V> replaceMin(KeyT k, V v, MinHeapPQ<V> pq) {
      pq.rplcmin(k, v); return pq; }
    public static MinHeapPQ<V> deleteMin(MinHeapPQ<V> pq) { pq.dltmin(); return pq; }
    public static MinHeapPQ<V> merge(MinHeapPQ<V> pq1, MinHeapPQ<V> pq2) {
      return fromSeq(pq1.sq().Concat(pq2.sq())); }
    public static MinHeapPQ<V> adjust(Func<KeyT, V, Tuple<KeyT, V>> f, MinHeapPQ<V> pq) {
      pq.adj(f); return pq; }
    public static MinHeapPQ<V> fromSeq(IEnumerable<Tuple<KeyT, V>> sq) {
      var pq = new MinHeapPQ<V>(); pq.bld(sq); return pq; }
    public static Tuple<Tuple<KeyT, V>, MinHeapPQ<V>> popMin(MinHeapPQ<V> pq) {
      var rslt = pq.pkmn; if (rslt == null) return null;
      pq.dltmin(); return new Tuple<Tuple<KeyT, V>, MinHeapPQ<V>>(rslt, pq); }
    public static IEnumerable<Tuple<KeyT, V>> toSeq(MinHeapPQ<V> pq) {
      for (; !pq.mt; pq.dltmin()) yield return pq.pkmn; }
    public static IEnumerable<Tuple<KeyT, V>> sort(IEnumerable<Tuple<KeyT, V>> sq) {
      return toSeq(fromSeq(sq)); }
  }
}

The above class code offers a full set of static methods and properties:

 1.  "empty" to create a new empty queue,
 2.  "isEmpty" to test if a queue is empty,
 3.  "size" to get the number of elements in the queue,
 4.  "peekMin" to retrieve the lowest priority key/value pair entry as a Tuple (possibly null for empty queues),
 5.  "push" to insert an entry,
 6.  "deleteMin" to remove the lowest priority entry,
 7.  "replaceMin" to replace the lowest priority and adjust the queue according to the value (faster than a "deleteMin" followed by a "push"),
 8.  "adjust" to apply a function to every key/value entry pair and reheapify the result,
 9.  "merge" to merge two queues into a single reheapified result,
 10. "fromSeq" to build a queue from a sequence of key/value pair tuples,
 11. "popMin" which is a convenience function combining a "peekMin" with a "deleteMin", returning null if the queue is empty and a tuple of the result otherwise,
 12. "toSeq" to output an ordered sequence of the queue contents as Tuple's of the key/value pairs, and
 13. "sort" which is a convenience function combining "fromSeq" followed by "toSeq".

The first four are all O(1) and the remainder O(log n) except "adjust" and "fromSeq" are O(n), "merge" is O(m + n) where m and n are the sizes of the two queues, and "toSeq" and "sort" are O(n log n); "replaceMin" is still O(log n) but faster than a "deleteMin" followed by a "push" by a constant factor.

Note that the Key type "KeyT" is not generic in order to give better comparison efficiency than using generic comparison using the IComparible interface but can be changed to different numeric types using the "using KeyT = ???" type alias.

The above code can be tested as per the page specification by the following code:

static void Main(string[] args) {
      Tuple<uint, string>[] ins = { new Tuple<uint,string>(3u, "Clear drains"),
                                    new Tuple<uint,string>(4u, "Feed cat"),
                                    new Tuple<uint,string>(5u, "Make tea"),
                                    new Tuple<uint,string>(1u, "Solve RC tasks"),
                                    new Tuple<uint,string>(2u, "Tax return") };

      var spq = ins.Aggregate(MinHeapPQ<string>.empty, (pq, t) => MinHeapPQ<string>.push(t.Item1, t.Item2, pq));
      foreach (var e in MinHeapPQ<string>.toSeq(spq)) Console.WriteLine(e); Console.WriteLine();

      foreach (var e in MinHeapPQ<string>.sort(ins)) Console.WriteLine(e); Console.WriteLine();

      var npq = MinHeapPQ<string>.fromSeq(ins);
      foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.merge(npq, npq)))
        Console.WriteLine(e); Console.WriteLine();

      var npq = MinHeapPQ<string>.fromSeq(ins);
      foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.merge(npq, npq)))
        Console.WriteLine(e);

      foreach (var e in MinHeapPQ<string>.toSeq(MinHeapPQ<string>.adjust((k, v) => new Tuple<uint,string>(6u - k, v), npq)))
        Console.WriteLine(e); Console.WriteLine();
    }

It tests building the queue the slow way using repeated "push"'s - O(n log n), the faster "fromSeq" (included in the "sort") - O(n), and also tests the "merge" and "adjust" methods.

The output of the above test is as follows:

Output:
(1, Solve RC tasks)
(2, Tax return)
(3, Clear drains)
(4, Feed cat)
(5, Make tea)

(1, Solve RC tasks)
(2, Tax return)
(3, Clear drains)
(4, Feed cat)
(5, Make tea)

(1, Solve RC tasks)
(1, Solve RC tasks)
(2, Tax return)
(2, Tax return)
(3, Clear drains)
(3, Clear drains)
(4, Feed cat)
(4, Feed cat)
(5, Make tea)
(5, Make tea)

(1, Make tea)
(2, Feed cat)
(3, Clear drains)
(4, Tax return)
(5, Solve RC tasks)

再贴上自己写的一点扩展方法
    public static class MinHeapPQEX
    {
        /// <summary>
        /// 创建一个空的优先级队列O(1)
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <returns></returns>
        public static PriorityQueue<T> CreatPriorityQueue<T>()
        {
            return PriorityQueue<T>.empty;
        }

        /// <summary>
        /// 进队 O(log n)
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <param name="pq"></param>
        /// <param name="priority"></param>
        /// <param name="model"></param>
        public static void Enqueue<T>(this PriorityQueue<T> pq, UInt32 priority, T model)
        {
            PriorityQueue<T>.push(priority, model, pq);
        }

        /// <summary>
        /// 出队  peek+delete
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <param name="pq"></param>
        /// <returns></returns>
        public static T Dequeue<T>(this PriorityQueue<T> pq)
        {
            return PriorityQueue<T>.popMin(pq).Item1.Item2;
        }

        /// <summary>
        /// 检索,但不出队 O(1)
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <param name="pq"></param>
        /// <returns></returns>
        public static T Peek<T>(this PriorityQueue<T> pq)
        {
            return PriorityQueue<T>.peekMin(pq).Item2;
        }

        /// <summary>
        /// 判断队列是否为空 O(1)
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <param name="pq"></param>
        /// <returns></returns>
        public static bool IsEmpty<T>(this PriorityQueue<T> pq)
        {
            return PriorityQueue<T>.isEmpty(pq);
        }

        /// <summary>
        /// 统计 O(1)
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <param name="pq"></param>
        /// <returns></returns>
        public static int Count<T>(this PriorityQueue<T> pq)
        {
            return PriorityQueue<T>.size(pq);
        }

        /// <summary>
        /// 删除即将出队的元素
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <param name="pq"></param>
        public static void Delete<T>(this PriorityQueue<T> pq)
        {
            PriorityQueue<T>.deleteMin(pq);
        }
    }

C# 优先级队列的更多相关文章

  1. 体验Rabbitmq强大的【优先级队列】之轻松面对现实业务场景

    说到队列的话,大家一定不会陌生,但是扯到优先级队列的话,还是有一部分同学是不清楚的,可能是不知道怎么去实现吧,其实呢,,,这东西已 经烂大街了...很简单,用“堆”去实现的,在我们系统中有一个订单催付 ...

  2. Java中的队列Queue,优先级队列PriorityQueue

    队列Queue 在java5中新增加了java.util.Queue接口,用以支持队列的常见操作.该接口扩展了java.util.Collection接口. Queue使用时要尽量避免Collecti ...

  3. 如何基于RabbitMQ实现优先级队列

    概述 由于种种原因,RabbitMQ到目前为止,官方还没有实现优先级队列,只实现了Consumer的优先级处理. 但是,迫于种种原因,应用层面上又需要优先级队列,因此需求来了:如何为RabbitMQ加 ...

  4. ACM/ICPC 之 优先级队列+设置IO缓存区(TSH OJ-Schedule(任务调度))

    一个裸的优先级队列(最大堆)题,但也有其他普通队列的做法.这道题我做了两天,结果发现是输入输出太过频繁,一直只能A掉55%的数据,其他都是TLE,如果将输入输出的数据放入缓存区,然后满区输出,可以将I ...

  5. java中PriorityQueue优先级队列使用方法

    优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果不提供Comparator的话,优先 ...

  6. stl的优先级队列

    #include <iostream> #include <vector> #include <queue> using namespace std; class ...

  7. 【python cookbook】【数据结构与算法】5.实现优先级队列

    问题:要实现一个队列,它能够以给定的优先级对元素排序,且每次pop操作时都会返回优先级最高的那个元素: 解决方案:采用heapq模块实现一个简单的优先级队列 # example.py # # Exam ...

  8. POJ 2227 The Wedding Juicer (优先级队列+bfs+dfs)

    思路描述来自:http://hi.baidu.com/perfectcai_/item/701f2efa460cedcb0dd1c820也可以参考黑书P89的积水. 题意:Farmer John有一个 ...

  9. 《Java数据结构与算法》笔记-CH4-6优先级队列

    /** * 优先级队列 * 效率:插入O(n),删除O(1).第12章介绍如何通过堆来改进insert时间 */ class PriorityQueue { private int maxSize; ...

  10. STL学习系列七:优先级队列priority_queue容器

    1.简介 最大值优先级队列.最小值优先级队列 优先级队列适配器 STL priority_queue 用来开发一些特殊的应用,请对stl的类库,多做扩展性学习 这里给个例子: #include< ...

随机推荐

  1. 【机器学习实战】第2章 k-近邻算法(kNN)

    第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法主要是用来进行分类的. KNN 场景 电影可以按照题材分类,那么如何区分 动作片 和 爱情片 呢? 动作 ...

  2. VMWare提供三种工作模式桥接(bridge)、NAT(网络地址转换)和host-only(主机模式)

    1.桥接模式 在桥接模式下,VMWare虚拟出来的操作系统就像是局域网中的一台独立的主机(主机和虚拟机处于对等地位),它可以访问网内任何一台机器.在桥接模式下,我们往往需要为虚拟主机配置IP地址.子网 ...

  3. 手把手教你完成App支付JAVA后台-支付宝支付JAVA

    接着上一篇博客,我们暂时完成了手机端的部分支付代码,接下来,我们继续写后台的代码. 后台基本需要到以下几个参数,我都将他们写在了properties文件中: 支付宝参数 AliPay.payURL = ...

  4. [CSS Flex] Justify-content

    justify content contol how element inside flex box align, it can be "right / end", or &quo ...

  5. 网络编程02---HTTP协议

    1.URL简单介绍 1.client怎样找到server 我们都知道网络中部署着各种各样的server.比方腾讯的server.百度的server.那么问题来了.client怎样找到想要连接的serv ...

  6. 浏览器对象模型(BOM)是什么?(体系结构+知识详解)(图片:结构)

    浏览器对象模型(BOM)是什么?(体系结构+知识详解)(图片:结构) 一.总结 1.BOM操作所有和浏览器相关的东西:网页文档dom,历史记录,浏览器屏幕,浏览器信息,文档的地址url,页面的框架集. ...

  7. js实现表格配对小游戏

    js实现表格配对小游戏 一.总结 一句话总结: 二.js实现表格配对 1.配对游戏案例说明 实例描述: 当用户点击两个相同的图案或字符后配对成功,全部配对成功后游戏获胜 案例008采用了大家常见的小游 ...

  8. WPF中自动增加行(动画)的TextBox

    原文:WPF中自动增加行(动画)的TextBox WPF中自动增加行(动画)的TextBox WPF中的Textbox控件是可以自动换行的,只要设置TextWrapping属性为"Wrap& ...

  9. 【33.33%】【codeforces 608C】Chain Reaction

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  10. Hexo里如何添加广告

    前期先用Hexo做个人网站,模板可以用https://github.com/828768/maupassant-hexo,关于如何加入广告,可以看一下https://sobaigu.com/hexo- ...