照片美妆---基于Haar特征的Adaboost级联人脸检测分类器
原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器
本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/34842233
基于Haar特征的Adaboost级联人脸检测分类器
基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器。通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征、Adaboost、级联。理解了这三个词对该算法基本就掌握了。
1 算法要点
Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联;
Haar分类器算法的要点如下:
a) 使用Haar-like特征做检测。
b) 使用积分图(IntegralImage)对Haar-like特征求值进行加速。
c) 使用AdaBoost算法训练区分人脸和非人脸的强分类器。
d) 使用筛选式级联把分类器级联到一起,提高准确率。
2 历史
在2001年,Viola和Jones两位大牛发表了经典的《Rapid Object Detectionusing a Boosted Cascade of Simple Features》和《Robust Real-Time Face Detection》,在AdaBoost算法的基础上,使用Haar-like小波特征和积分图方法进行人脸检测,他俩不是最早使用提出小波特征的,但是他们设计了针对人脸检测更有效的特征,并对AdaBoost训练出的强分类器进行级联。这可以说是人脸检测史上里程碑式的一笔了,也因此当时提出的这个算法被称为Viola-Jones检测器。又过了一段时间,RainerLienhart和Jochen Maydt两位大牛将这个检测器进行了扩展,最终形成了OpenCV现在的Haar分类器。
AdaBoost是Freund和Schapire在1995年提出的算法,是对传统Boosting算法的一大提升。Boosting算法的核心思想,是将弱学习方法提升成强学习算法,也就是“三个臭皮匠顶一个诸葛亮”
3 Haar特征
什么是特征,特征就是分类器的输入。把它放在下面的情景中来描述,假设在人脸检测时我们需要有这么一个子窗口在待检测的图片窗口中不断的移位滑动,子窗口每到一个位置,就会计算出该区域的特征,然后用我们训练好的级联分类器对该特征进行筛选,一旦该特征通过了所有强分类器的筛选,则判定该区域为人脸。
那么这个特征如何表示呢?好了,这就是大牛们干的好事了。后人称这他们搞出来的这些东西叫Haar-Like特征。
Viola大牛在[1]中提出的haar特征如下:
Rainer大牛改进了这些特征,提出了更多的haar特征。如下图所示:
这些所谓的特征不就是一堆堆带条纹的矩形么,到底是干什么用的?我这样给出解释,将上面的任意一个矩形放到人脸区域上,然后,将白色区域的像素和减去黑色区域的像素和,得到的值我们暂且称之为人脸特征值,如果你把这个矩形放到一个非人脸区域,那么计算出的特征值应该和人脸特征值是不一样的,而且越不一样越好,所以这些方块的目的就是把人脸特征量化,以区分人脸和非人脸。
4 Adaboost算法
本节旨在介绍AdaBoost在Haar分类器中的应用,所以只是描述了它在Haar分类器中的特性,而实际上AdaBoost是一种具有一般性的分类器提升算法,它使用的分类器并不局限某一特定算法。
[1]中给出的Adaboost算法流程如下图。
由adaboost在haar特征上构建分类器的流程可知,adaboost算法就是构建多个简单的分类器,每个简单的分类器都建立在之前分类器的基础上(对之前分类器分错了的样例提高其权重),然后将这些分类器加权,得到一个强大的分类器。
Adaboost的每一步训练出的分类器,如下图所示。其中,f表示特征的值,theta表示阈值,p则表示不等式的方向。这样的一个分类器就是基于一个特征的弱分类器。
更进一步,adaboost的一般算法框架如下。可以看到,Discrete Adaboost和GentleAdaboost在分类器的计算上和权重的更新上是有差别的。还有一种是RealAdaboost,即分类器输出的是一个概率而不只是+1与-1。[3]中就比较了这三种Adaboost的变种的效果。
5 级联
什么是级联分类器?级联分类器就是如下图所示的一种退化了的决策树。为什么说是退化了的决策树呢?是因为一般决策树中,判断后的两个分支都会有新的分支出现,而级联分类器中,图像被拒绝后就直接被抛弃,不会再有判断了。
级联强分类器的策略是,将若干个强分类器由简单到复杂排列,希望经过训练使每个强分类器都有较高检测率,而误识率可以放低,比如几乎99%的人脸可以通过,但50%的非人脸也可以通过,这样如果有20个强分类器级联,那么他们的总识别率为0.99^20约等于98%,错误接受率也仅为0.5^20约等于0.0001%。这样的效果就可以满足现实的需要了。文献[1]中给出了一种由简单到复杂设计级联分类器的方法,那就是添加特征法,对于第一个分类器,只用少数几个特征,之后的每个分类器都在上一个的基础上添加特征,直到满足该级的要求。
训练级联分类器的目的就是为了检测的时候,更加准确,这涉及到Haar分类器的另一个体系,检测体系,检测体系是以现实中的一幅大图片作为输入,然后对图片中进行多区域,多尺度的检测,所谓多区域,是要对图片划分多块,对每个块进行检测,由于训练的时候用的照片一般都是20*20左右的小图片,所以对于大的人脸,还需要进行多尺度的检测,多尺度检测机制一般有两种策略,一种是不改变搜索窗口的大小,而不断缩放图片,这种方法显然需要对每个缩放后的图片进行区域特征值的运算,效率不高,而另一种方法,是不断初始化搜索窗口size为训练时的图片大小,不断扩大搜索窗口,进行搜索,解决了第一种方法的弱势。
6 积分图
积分图是用来加速计算haar特征的方法。Haar特征的计算所需要的基本数据就是区域内像素的和。而仅仅对于24*24的图片来说,它的不同类型的haar特征数目就有11W个(参考[3])。为了快速的计算出这些特征的值,就有了积分图表示图像的方法。
什么是积分图?对于与图像边界平行的haar特征来说,积分图就是与图像大小一样的一个二维数组。该数组中,(x,y)位置的值是原始图像中从(0,0)到(x,y)处的像素值的和。对于45度偏向的haar特征来说,也类似。如下图所示:
对于a、c图所示的haar特征。计算公式如下:
其中,SAT即为积分图中的值,RecSum即为(x,y)处的长宽为(w,h)的区域的和。有了RecSum后,就可以计算haar特征了。
相似的,b,d图所示的haar特征计算公式如下:
意义类似,不一一解释了。
积分图的好处在于,只对图片进行一次累计计算,就可以很方便的计算出haar特征值了。
7 总结
基于Haar特征的Adaboost级联分类器,在人脸的识别效果上并没有比其他算法高,其亮点在于检测速度。而速度的提升,有如下几方面的因素。第一:使用的特征简单,haar特征只需计算像素的和就可以了。第二:即便是如此简单的特征,还添加了积分图进行加速。第三,级联分类器的设定,使得大量的没有人脸的子窗口被抛弃。
参考文献
[1]. Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001, 1: I-511-I-518 vol. 1.
[2]. Lienhart R, Maydt J. An extended set of haar-like features for rapid object detection[C]//Image Processing. 2002. Proceedings. 2002 International Conference on. IEEE, 2002, 1: I-900-I-903 vol. 1.
[3]. Lienhart R, Kuranov A, Pisarevsky V. Empirical analysis of detection cascades of boosted classifiers for rapid object detection[M]//Pattern Recognition. Springer Berlin Heidelberg, 2003: 297-304.
[4]. http://blog.sina.com.cn/s/blog_74a459380101fcx7.html
[5]. http://www.codeproject.com/Articles/441226/Haar-feature-Object-Detection-in-Csharp
照片美妆---基于Haar特征的Adaboost级联人脸检测分类器的更多相关文章
- 基于Haar特征的Adaboost级联人脸检测分类器
基于Haar特征的Adaboost级联人脸检测分类器基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征 ...
- 基于Haar特征Adaboost人脸检测级联分类
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.A ...
- OpenCV中基于Haar特征和级联分类器的人脸检测
使用机器学习的方法进行人脸检测的第一步需要训练人脸分类器,这是一个耗时耗力的过程,需要收集大量的正负样本,并且样本质量的好坏对结果影响巨大,如果样本没有处理好,再优秀的机器学习分类算法都是零. 今年3 ...
- HAAR与DLib的实时人脸检测之实现与对比
人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等. 对于opencv的人脸检测方法,优点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸, ...
- OpenCV学习记录(二):自己训练haar特征的adaboost分类器进行人脸识别 标签: 脸部识别opencv 2017-07-03 21:38 26人阅读
上一篇文章中介绍了如何使用OpenCV自带的haar分类器进行人脸识别(点我打开). 这次我试着自己去训练一个haar分类器,前后花了两天,最后总算是训练完了.不过效果并不是特别理想,由于我是在自己的 ...
- 基于Adaboost的人脸检测算法
AdaBoost算法是一种自适应的Boosting算法,基本思想是选取若干弱分类器,组合成强分类器.根据人脸的灰度分布特征,AdaBoost选用了Haar特征[38].AdaBoost分类器的构造过程 ...
- 基于AdaBoost的人脸检测
原地址:http://blog.csdn.net/celerychen2009/article/details/8839097 人脸检测和人脸识别都是属于典型的机器学习的方法,但是他们使用的方法却相差 ...
- 基于HOG特征的Adaboost行人检测
原地址:http://blog.csdn.net/van_ruin/article/details/9166591 .方向梯度直方图(Histogramof Oriented Gradient, HO ...
- 第九节、人脸检测之Haar分类器
人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前人脸检测的方法主 ...
随机推荐
- 以Graphicslayer为管理组来管理Element.
转自原文 以Graphicslayer为管理组来管理Element. 前言 在AE开发过程中,我们经常使用Element(元素).它的出现让地图与用户之间的交互增加了不少的效果.在地图上,可以通过各种 ...
- 浏览器对象模型bom的作用是什么?
浏览器对象模型bom的作用是什么? 零.总结 1.BOM提供了独立于内容而与浏览器窗口进行交互的对象 2.BOM提供了一些访问窗口对象的一些方法,我们可以用它来移动窗口位置,改变窗口大小,打开新窗口和 ...
- 【t019】window(单调队列)
Time Limit: 2 second Memory Limit: 256 MB [问题描述] 给你一个长度为N 的数组,一个长为K的滑动的窗体从最左移至最右端,你只能见到窗口的K个数,每次窗体向右 ...
- HTML5物理游戏开发 - 越野山地自行车(三)粉碎自行车
自上一章公布到如今已时隔四月,实在对不住大家.让大家久等了~话说不是我不关注我的博客,而是事情一多起来写博客的时间就少了. 待到今日有空了,回头看了看自己曾经写的文章,猛得发现已经四个月不曾写文章了. ...
- java基本数据类型练习
package javafirst;//包名 public class JavaFirstDay { //基本数据类型的练习 public static void main(String[] args ...
- 一题多解(五) —— topK(数组中第 k 大/小的数)
根据对称性,第 k 大和第 k 小,在实现上,是一致的,我们就以第 k 小为例,进行说明: 法 1 直接排序(sort(A, A+N)),当使用一般时间复杂度的排序算法时,其时间复杂度为 O(N2) ...
- Windows 平台下 LiteIDE 的安装和使用
1. 安装 Go 语言并设置环境变量 参考博客<Windows 平台下 Go 语言的安装和环境变量设置>. 2. MinGW 的下载和安装 Windows 下的 Go 调试还需要安装 Mi ...
- Vue挂载元素的替换
Vue根组件已有挂载DOM'#app',在render又引进一个组件,该组件最外层也是用了'#app',为何根组件的DOM'#app'会被替换掉. //main.js import Vue from ...
- java序列化框架(protobuf、thrift、kryo、fst、fastjson、Jackson、gson、hessian)性能对比
我们为什么要序列化 举个栗子:下雨天我们要打伞,但是之后我们要把伞折叠起来,方便我们存放.那么运用到我们java中道理是一样的,我们要将数据分解成字节流,以便存储在文件中或在网络上传输,这叫序列 ...
- Arcgis api for javascript学习笔记(4.5版本) - 获取FeatureLayer中的graphics集合
在Arcgis api for javascript 3.x 版本中,我们可以直接通过某个FeatureLayer对象中的graphics属性获取要素集合. graphics属性 但是在4.x版本中, ...