poj2486--Apple Tree(树状dp)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7789 | Accepted: 2606 |
Description
the apples in the nodes she reaches. HX is a kind guy. He knows that eating too many can make the lovely girl become fat. So he doesn’t allow Wshxzt to go more than K steps in the tree. It costs one step when she goes from one node to another adjacent node.
Wshxzt likes apple very much. So she wants to eat as many as she can. Can you tell how many apples she can eat in at most K steps.
Input
Each test case contains three parts.
The first part is two numbers N K, whose meanings we have talked about just now. We denote the nodes by 1 2 ... N. Since it is a tree, each node can reach any other in only one route. (1<=N<=100, 0<=K<=200)
The second part contains N integers (All integers are nonnegative and not bigger than 1000). The ith number is the amount of apples in Node i.
The third part contains N-1 line. There are two numbers A,B in each line, meaning that Node A and Node B are adjacent.
Input will be ended by the end of file.
Note: Wshxzt starts at Node 1.
Output
Sample Input
2 1
0 11
1 2
3 2
0 1 2
1 2
1 3
Sample Output
11
2
题目大意:给出一个n个节点的树,每一个节点上有个值,问不超过k步最高能够获得的值。i到j算一步,j到i也算一步
输入: 输入n和k。然后是n个节点的值,然后是n-1个i j代表了i和j节点相邻。
根是1.
非常easy看出来这是一个树状dp。dp[i][j]代表了以i节点为根。用j步能够得到的最大值,可是由于走到子树算是一步,走回到根也是一步,所以就要有两个dp关系,dp1[i][j]代表从i节点走j步又回到j节点的最大值,dp2[i][j]代表从i节点走j步不会到i节点的最大值。
那么状态转移方程为:当前节点为u。子树为v
回到i节点时:在节点u走j步,在子树v中走k步,从u到v和从v到u共走两步。那么在除v之外的其它子树走了j-k-2步。
dp1[u][j] = max(dp1[u][j],dp1[u][j-k-2]+dp1[v][k])
不回到i节点时:从节点u走j步
1.不在v子树中返回u,那么会在其它子树中返回u。在v中走k步。在u到v走一步,在除v外的子树走j-k-1步。
dp2[u][j] = max(dp2[u][j],dp1[u][j-k-1]+dp2[v][k])
2.在v子树中返回u,那么会在其它子树中存在不返回u的,在v中走k步。在u到v和v到u走两步。在除v之外的子树走j-k-2步。
dp2[u][j] = max(dp2[u][j],dp2[u][j-k-2]+dp1[v][k])
注意1:输入的节点i。j是相邻的关系。根是1。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std ;
struct tree{
int v , next ;
}edge[110];
int head[110] , cnt ;
int dp1[110][210] , dp2[110][210] ;//dp1返回。dp2不返回 dp[i][j]:从i节点出发使用j步能够得到的最大值
int c[110] , n , m ;
void add(int u,int v) {
edge[cnt].v = v ;
edge[cnt].next = head[u] ;
head[u] = cnt++ ;
return ;
}
void dfs(int u) {
int i , j , k , v ;
dp1[u][0] = dp2[u][0] = c[u] ;
if( head[u] == -1 )
return ;
for(i = head[u] ; i != -1 ; i = edge[i].next) {
v = edge[i].v ;
dfs(v) ;
}
for(i = head[u] ; i != -1 ; i = edge[i].next) {
v = edge[i].v ;
for(j = m ; j >= 0 ; j--) {
for(k = 0 ; k <= j ; k++) {
if( k+2 <= j ) {
dp1[u][j] = max(dp1[u][j],dp1[u][j-k-2]+dp1[v][k]) ;
dp2[u][j] = max(dp2[u][j],dp2[u][j-k-2]+dp1[v][k]) ;
}
if( k+1 <= j )
dp2[u][j] = max(dp2[u][j],dp1[u][j-k-1]+dp2[v][k]) ;
}
}
}
}
int Map[110][110] ;
queue <int> que ;
void bfs(int n) {
while( !que.empty() ) que.pop() ;
que.push(1) ;
int i , u , v ;
while( !que.empty() ) {
u = que.front() ;
que.pop() ;
for(i = 1 ; i <= n ; i++){
if( Map[u][i] == 1 ) {
Map[u][i] = Map[i][u] = 0 ;
add(u,i) ;
que.push(i) ;
}
}
}
}
int main() {
int i , j , u , v ;
while( scanf("%d %d", &n, &m) != EOF ) {
memset(head,-1,sizeof(head)) ;
memset(dp1,0,sizeof(dp1)) ;
memset(dp2,0,sizeof(dp2)) ;
memset(Map,0,sizeof(Map)) ;
cnt = 0 ;
for(i = 1 ; i <= n ; i++)
scanf("%d", &c[i]) ;
for(i = 1 ; i < n ; i++) {
scanf("%d %d", &u, &v) ;
Map[u][v] = Map[v][u] = 1 ;
}
bfs(n) ;
dfs(1) ;
int max1 = 0 ;
for(i = 0 ; i <= m ; i++) {
max1 = max(max1,dp2[1][i]) ;
}
printf("%d\n", max1) ;
}
return 0 ;
}
poj2486--Apple Tree(树状dp)的更多相关文章
- POJ 2486 Apple Tree [树状DP]
题目:一棵树,每个结点上都有一些苹果,且相邻两个结点间的距离为1.一个人从根节点(编号为1)开始走,一共可以走k步,问最多可以吃多少苹果. 思路:这里给出数组的定义: dp[0][x][j] 为从结点 ...
- POJ 3321 Apple Tree(树状数组)
Apple Tree Time Limit: 2000MS Memory Lim ...
- POJ--3321 Apple Tree(树状数组+dfs(序列))
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22613 Accepted: 6875 Descripti ...
- POJ 3321:Apple Tree 树状数组
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22131 Accepted: 6715 Descr ...
- E - Apple Tree(树状数组+DFS序)
There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. ...
- POJ 3321 Apple Tree 树状数组+DFS
题意:一棵苹果树有n个结点,编号从1到n,根结点永远是1.该树有n-1条树枝,每条树枝连接两个结点.已知苹果只会结在树的结点处,而且每个结点最多只能结1个苹果.初始时每个结点处都有1个苹果.树的主人接 ...
- POJ3321 Apple Tree(树状数组)
先做一次dfs求得每个节点为根的子树在树状数组中编号的起始值和结束值,再树状数组做区间查询 与单点更新. #include<cstdio> #include<iostream> ...
- POJ 3321 Apple Tree (树状数组+dfs序)
题目链接:http://poj.org/problem?id=3321 给你n个点,n-1条边,1为根节点.给你m条操作,C操作是将x点变反(1变0,0变1),Q操作是询问x节点以及它子树的值之和.初 ...
- POJ 3321 Apple Tree 树状数组 第一题
第一次做树状数组,这个东西还是蛮神奇的,通过一个简单的C数组就可以表示出整个序列的值,并且可以用logN的复杂度进行改值与求和. 这道题目我根本不知道怎么和树状数组扯上的关系,刚开始我想直接按图来遍历 ...
随机推荐
- BootStrap有用代码片段(持续总结)
> 如题.持续总结自己在使用BootStrap中遇到的问题.并记录解决方法.希望能帮到须要的小伙伴 1.bootstrap上下布局.顶部固定下部填充 应用场景:经典上下布局中,顶部导航条固定,下 ...
- PostgreSQL Replication之第七章 理解Linux高可用(2)
7.2 衡量可用性 可用性是提供商试图保证一定的可用性级别和客户可以期望的可用性或更多.在某些情况下(取决于服务合同) 收取罚款或减少申购费用是意外停机的原因. 可用性的质量使用百分数来衡量:例如,9 ...
- php函数: call_user_func()和call_user_func_array() 使用详解
call_user_func 该函数允许直接调用自己写的函数,可以直接传入一些参数. 使用方法1:给自己写的函数传入参数,一个特别的调用函数的方法. <?php funciotn test1($ ...
- Centos安装masscan
1.yum install git gcc make libpcap-devel2.git clone https://github.com/robertdavidgraham/masscan3.cd ...
- NodeJS学习笔记 (14)URL查询字符串-querystring(ok)
模块概述 在nodejs中,提供了querystring这个模块,用来做url查询参数的解析,使用非常简单. 模块总共有四个方法,绝大部分时,我们只会用到 .parse(). **.stringify ...
- CF402E Strictly Positive Matrix(矩阵,强联通分量)
题意 给定一个 n∗n 的矩阵 A,每个元素都非负判断是否存在一个整数 k 使得 A^k 的所有元素 >0 n≤2000(矩阵中[i][i]保证为1) 题解 考虑矩阵$A*A$的意义 ,设得到的 ...
- pip命令使用方法 与 错误处理
这里把学习到的pip命令写一个汇总,方便想不起来时使用 通过cmd输入pip可以显示提示信息,中文翻译如下: 1)显示某个包的信息 pip show selenium #显示selenium模块的信息 ...
- CSU 1446 Modified LCS 扩展欧几里得
要死了,这个题竟然做了两天……各种奇葩的错误…… HNU的12831也是这个题. 题意: 给你两个等差数列,求这两个数列的公共元素的数量. 每个数列按照以下格式给出: N F D(分别表示每个数列的长 ...
- Android 查看CPU及内存
借助getprop.dumpsys来了解一些系统相关信息. 一.getprop adb shell cat /system/build.prop 文件中存放的是用于启动系统时需要的配置文件,通常可以通 ...
- C++ 容器(一):顺序容器简介
C++提供了使用抽象进行高效编程的方式,标准库中定义了许多容器类以及一系列泛型函数,使程序员可以更加简洁.抽象和有效地编写程序,其中包括:顺序容器,关联容器和泛型算法.本文将简介顺序容器(vector ...