SICP 习题 2.11又出现Ben这个人了,如曾经说到的,仅仅要是Ben说的一般都是对的。

来看看Ben说什么。他说:“通过监測区间的端点,有可能将mul-interval分解为9中情况,每种情况中所须要的乘法都不超过两次”。

所以这个叫Ben的人建议Allysa重写mul-interval过程。

究竟是啥意思呢。我们先来看看曾经的mul-interval过程:

(define (mul-interval x y)
(let (( p1 (* (lower-bound x) (lower-bound y)))
( p2 (* (lower-bound x) (upper-bound y)))
( p3 (* (upper-bound x) (lower-bound y)))
( p4 (* (upper-bound x) (upper-bound y))))
(make-interval (min p1 p2 p3 p4)
(max p1 p2 p3 p4))))

能够发现,这里使用了4次乘法。然后取4此乘法的最小值为起点,最大值为终点。

按Ben的意思,我们能够将这4次乘法降低为两次,前提是对区间的端点进行推断。

事实上我们自己想一想大概能够明确Ben这段神奇的话。 比方,假设相乘的两个区间都是全然大于零的区间。两个区间的起点相乘肯定是4次乘法中最小的值,而两个终点相乘肯定是4次乘法中的最大的,这样我们仅仅须要计算两个起点相乘,还有就是两个终点相乘就能够了。

这样我们就能够使用2次乘法完毕工作,而不用4次。

只是,对我们程序猿来讲工作就复杂非常多了,我们须要取推断这9中情况,分别想好9种情况种选用什么作为结构的起点和终点。最后写出来的代码例如以下,巨烦琐:

(define (mul-interval x y)
(if (> (lower-bound x) 0)
(if (> (lower-bound y) 0)
(make-interval (* (lower-bound x) (lower-bound y)) (* (upper-bound x) (upper-bound y)))
(if (> (upper-bound y) 0)
(make-interval (* (upper-bound x) (lower-bound y)) (* (upper-bound x) (upper-bound y)))
(make-interval (* (lower-bound x) (upper-bound y)) (* (lower-bound x) (upper-bound y)))))
(if (> (upper-bound x) 0)
(if (> (lower-bound y) 0)
(make-interval (* (lower-bound x) (upper-bound y)) (* (upper-bound x) (upper-bound y)))
(if (> (upper-bound y) 0)
(make-interval (* (lower-bound x) (lower-bound y))
(* (upper-bound x) (upper-bound y)))
(make-interval (* (lower-bound x) (lower-bound y))
(* (upper-bound x) (upper-bound y)))))
(if (> (lower-bound y) 0)
(make-interval (* (lower-bound x) (lower-bound y)) (* (upper-bound x) (upper-bound y)))
(if (> (upper-bound y) 0)
(make-interval (* (lower-bound x) (lower-bound y))
(* (upper-bound x) (upper-bound y)))
(make-interval (* (lower-bound x) (lower-bound y))
(* (upper-bound x) (upper-bound y))))) )))

有人可能会问。把原来那个如此优雅的过程写成如今这样有意思吗?一堆丑陋的推断。

这里须要理解的就是。假设系统中乘法是一个消耗非常大的操作。比方每一个乘法消耗2秒,这样我们做这个优化就有意义的,尽管我们写的代码丑非常多,麻烦非常多,只是代码执行效率就比較高了。

SICP 习题 (2.11)解题总结:区间乘法的优化的更多相关文章

  1. SICP 习题 (1.14)解题总结

    SICP 习题 1.14要求计算出过程count-change的增长阶.count-change是书中1.2.2节讲解的用于计算零钱找换方案的过程. 要解答习题1.14,首先你需要理解count-ch ...

  2. SICP 习题 (1.13) 解题总结

    SICP习题1.13要求证明Fib(n)是最接近φn/√5 的整数,其中φ=(1+√5)/2 .题目还有一个提示,提示解题者利用归纳法和斐波那契数的定义证明Fib(n)=(φn - ψn) / √5 ...

  3. SICP 习题 (1.7) 解题总结

    SICP 习题 1.7 是对正文1.1.7节中的牛顿法求平方根的改进,改进部分是good-enough?过程. 原来的good-enough?是判断x和guess平方的差值是否小于0.001,这个过程 ...

  4. SICP 习题 (1.8) 解题总结

    SICP 习题1.8需要我们做的是按照牛顿法求平方根的方法做一个求立方根的过程. 所以说书中讲牛顿法求平方根的内容还是要好好理解,不然后面这几道题做起来就比较困难. 反过来,如果理解了牛顿法求平方根的 ...

  5. SICP 习题 (1.9) 解题总结

    SICP 习题 1.9 开始针对“迭代计算过程”和“递归计算过程”,有关迭代计算过程和递归计算过程的内容在书中的1.2.1节有详细讨论,要完成习题1.9,必须完全吃透1.2.1节的内容,不然的话,即使 ...

  6. SICP 习题 (2.10)解题总结: 区间除法中除于零的问题

    SICP 习题 2.10 要求我们处理区间除法运算中除于零的问题. 题中讲到一个专业程序猿Ben Bitdiddle看了Alyssa的工作后提出了除于零的问题,大家留意一下这个叫Ben的人,后面会不断 ...

  7. SICP 习题 (2.8) 解题总结:区间的减法

    SICP 习题 2.8 须要我们完毕区间运算的减法.区间运算的加法书中已经有了,代码例如以下: (define (add-interval x y) (make-interval (+ (lower- ...

  8. SICP 习题 (1.10)解题总结

    SICP 习题 1.10 讲的是一个叫“Akermann函数”的东西,去百度查可以查到对应的中文翻译,叫“阿克曼函数”. 就像前面的解题总结中提到的,我是一个数学恐惧者,看着稍微复杂一点的什么函数我就 ...

  9. SICP 习题 (2.7) 解题总结 : 定义区间数据结构

    SICP 习题 2.7 開始属于扩展练习,能够考虑不做,对后面的学习没什么影响.只是,假设上面的使用过程表示序对,还有丘奇计数你都能够理解的话,完毕这些扩展练习事实上没什么问题. 习题2.7是要求我们 ...

随机推荐

  1. luogu P2041 分裂游戏(结论题)

    题意 题解 一开始理解错题意了.以为这题不可解.. 其实这题当n>=3时都是无解的 然后n=1,2时的解都给出来了. 推荐一个博客的证明 #include<iostream> #in ...

  2. HTTP——学习笔记(1)

    名词解释: 协议: HTTP:HyperText Transfer Protocol,超文本传输协议,属于应用层的协议 FTP:File Transfer Protocol,文件传输协议,相比于HTT ...

  3. Qt之QTimer

    简述 QTimer类提供了重复和单次触发信号的定时器. QTimer类为定时器提供了一个高级别的编程接口.很容易使用:首先,创建一个QTimer,连接timeout()信号到适当的槽函数,并调用sta ...

  4. 图像切割—基于图的图像切割(Graph-Based Image Segmentation)

     图像切割-基于图的图像切割(Graph-Based Image Segmentation) Reference: Efficient Graph-Based Image Segmentation ...

  5. iOS 时间类经常用法

    //当前日前日期 NSDate *today = [NSDate date]; //时区 NSTimeZone *zone = [NSTimeZone systemTimeZone]; //设置间隔 ...

  6. C++学习第一天--编译命令

    前一个月的时间主要是在捯饬自己的ubuntu vim环境,昨天终于都搞好了,从今天开始,学习C++.至于为什么学习C++,其实很大一部分原因还是因为自己喜欢vim,又听说vim对C++的支持还不错,所 ...

  7. bzoj1193: [HNOI2006]马步距离(贪心+bfs)

    1193: [HNOI2006]马步距离 题目:传送门 题解: 毒瘤题... 模拟赛时的一道题,刚开始以为是一道大难题...一直在拼命找规律 结果.... 还是说正解吧: 暴力的解法肯定是直接bfs, ...

  8. js中如何取精度

    js中如何取精度 一.总结 一句话总结:其实round()函数去经度会有误差,直接用num.toFixed(2)简单方便. toFixed()方法会按照指定的小数返回数值的字符串表示.var num ...

  9. 51Nod 独木舟(贪心)

    n个人,已知每个人体重.独木舟承重固定,每只独木舟最多坐两个人,可以坐一个人或者两个人.显然要求总重量不超过独木舟承重,假设每个人体重也不超过独木舟承重,问最少需要几只独木舟? Input 第一行包含 ...

  10. 记intel杯比赛中各种bug与debug【其五】:朴素贝叶斯分类器的实现和针对性的优化

    咱这个项目最主要的就是这个了 贝叶斯分类器用于做可以统计概率的二元分类 典型的例子就是垃圾邮件过滤 理论基础 对于贝叶斯算法,这里附上两个链接,便于理解: 朴素贝叶斯分类器的应用-阮一峰的网络日志 基 ...