图像金字塔(pyramid)与 SIFT 图像特征提取(feature extractor)
0. 图像金字塔变换(matlab)
matlab 对图像金字塔变换接口的支持(impyramid
),十分简单好用。
其支持在reduce
和expand
两种方式的变换,分别是成比例的缩小和放大。
% 加载图像数据到内存
I = imread('cameraman.tif'); size(I)
% reduce ==> {2, 4, 8}
I1 = impyramid(I, 'reduce'); size(I1)
I2 = impyramid(I1, 'reduce'); size(I2)
I3 = impyramid(I2, 'reduce'); size(I3)
figure
a1 = subplot(1, 4, 1); imshow(I),
xs = get(a1, 'xlim'); ys = get(a1, 'ylim');
a2 = subplot(1, 4, 2); imshow(I1),
set(a2, 'xlim', xs, 'ylim', ys);
a3 = subplot(1, 4, 3); imshow(I2),
set(a3, 'xlim', xs, 'ylim', ys);
a4 = subplot(1, 4, 4); imshow(I3)
set(a4, 'xlim', xs, 'ylim', ys);
I1 = impyramid(I, 'expand'); size(I1)
I2 = impyramid(I1, 'expand'); size(I2)
I3 = impyramid(I2, 'expand'); size(I3)
figure
a1 = subplot(1, 4, 1); imshow(I3),
xs = get(a1, 'xlim'); ys = get(a1, 'ylim');
a2 = subplot(1, 4, 2); imshow(I2),
set(a2, 'xlim', xs, 'ylim', ys);
a3 = subplot(1, 4, 3); imshow(I1),
set(a3, 'xlim', xs, 'ylim', ys);
a4 = subplot(1, 4, 4); imshow(I)
set(a4, 'xlim', xs, 'ylim', ys);
1. SIFT
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关 scale 和 orientation 的描述子(descriptor)得到特征并进行图像特征点匹配,获得了良好效果。
整个算法分为以下几个部分:
1、构建尺度空间
这是一个初始化操作,尺度空间理论目的是模拟图像数据的多尺度特征。
高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间(多尺度特征自然在尺度空间中定义)定义为:
L(x,y,σ)=G(x,y,σ)⋆I(x,y)二维的高斯卷积核的形式为:G(x,y,σ)=12πσ2e−(x2+y2)/2σ2
σ 大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。大的 σ 值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分核与图像卷积生成。
D(x,y,σ)==(G(x,y,kσ)−G(x,y,σ))⋆I(x,y)L(x,y,kσ)−L(x,y,σ)图像金字塔的建立:对于一幅图像I,建立其在不同尺度(scale)的图像,也成为子八度(octave),这是为了scale-invariant,也就是在任何尺度都能够有对应的特征点,第一个子八度的scale为原图大小,后面每个octave为上一个octave降采样的结果,即原图的1/4(长宽分别减半),构成下一个子八度(高一层金字塔)。
2、LoG 近似 DoG 找到关键点<检测DOG尺度空间极值点>
为了寻找尺度空间的极值点,每一个采样点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。 一个点如果在DOG尺度空间本层以及上下两层的26个领域中是最大或最小值时,就认为该点是图像在该尺度下的一个特征点,如图所示。
3、除去不好的特征点
图像金字塔(pyramid)与 SIFT 图像特征提取(feature extractor)的更多相关文章
- 机器学习进阶-图像金字塔与轮廓检测-图像金字塔-(**高斯金字塔) 1.cv2.pyrDown(对图片做向下采样) 2.cv2.pyrUp(对图片做向上采样)
1.cv2.pyrDown(src) 对图片做向下采样操作,通常也可以做模糊化处理 参数说明:src表示输入的图片 2.cv2.pyrUp(src) 对图片做向上采样操作 参数说明:src表示输入的 ...
- Atitit 图像金字塔原理与概率 attilax的理解总结qb23
Atitit 图像金字塔原理与概率 attilax的理解总结qb23 1.1. 高斯金字塔 ( Gaussianpyramid): 拉普拉斯金字塔 (Laplacianpyramid):1 1.2 ...
- 图像金字塔、高斯金字塔、差分金字塔(DOG金字塔)、尺度空间、DoG (Difference of Gaussian)角点检测
[图像金字塔] 图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像.把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列像素(尺 ...
- OpenCV计算机视觉学习(7)——图像金字塔(高斯金字塔,拉普拉斯金字塔)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 本节 ...
- SIFT中的尺度空间和传统图像金字塔
SIFT中的尺度空间和传统图像金字塔 http://www.zhizhihu.com/html/y2010/2146.html 最近自己混淆了好多概念,一边弄明白的同时,也做了一些记录,分享一下.最近 ...
- Sift中尺度空间、高斯金字塔、差分金字塔(DOG金字塔)、图像金字塔
转自:https://blog.csdn.net/dcrmg/article/details/52561656 一. 图像金字塔 图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像 ...
- OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放
这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...
- Python+OpenCV图像处理(十一)—— 图像金字塔
简介:图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构.简单来说,图像金字塔就是用来进行图像缩放的. 进行图像缩放可以用图像金字塔,也可以使用 ...
- 『Python』图像金字塔、滑动窗口和非极大值抑制实现
图像金字塔 1.在从cv2.resize中,传入参数时先列后行的 2.使用了python中的生成器,调用时使用for i in pyramid即可 3.scaleFactor是缩放因子,需要保证缩放后 ...
随机推荐
- 解密Arm中国:全球最具影响力的芯片公司中国布局浮出水面
经济观察报 记者 陈伊凡 沈怡然 李华清 对于Arm与中国合资公司事宜,5月4日下午,Arm授权的代表邮件回复<经济观察报>称:“合资公司目前刚开始运营”,“我们的重点是让这个新的合资公司 ...
- php实现调整数组顺序使奇数位于偶数前面
php实现调整数组顺序使奇数位于偶数前面 一.总结 1.array_push()两个参数,$arr在前 2.array_merge()的返回值是数组 二.php实现调整数组顺序使奇数位于偶数前面 ...
- A Guide to Python's Magic Methods
Book Source:[https://rszalski.github.io/magicmethods/] magic methods: 名称前后有双下划线的方法 构造函数和初始化 初始化类实例时, ...
- SpringMvc中两个Controller类之间传递参数的方法
使用SpringMvc框架,在访问ControllerA的时候,将A里面的参数传递到ControllerB中.适用于同一框架下两个不同Controller或者由rpc(dubbo)连接的两个工程里的C ...
- ios开发runtime学习五:KVC以及KVO,利用runtime实现字典转模型
一:KVC和KVO的学习 #import "StatusItem.h" /* 1:总结:KVC赋值:1:setValuesForKeysWithDictionary实现原理:遍历字 ...
- poj 2955 Brackets 括号匹配 区间dp
题意:最多有多少括号匹配 思路:区间dp,模板dp,区间合并. 对于a[j]来说: 刚開始的时候,转移方程为dp[i][j]=max(dp[i][j-1],dp[i][k-1]+dp[k][j-1]+ ...
- 【26.8%】【CF 46D】Parking Lot
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- android 之修改图片的某一颜色值
首先我们来创建一个叫Image的类,这个类主要用来处理与图有关的一些操作. package org.cn.tools; import java.io.IOException; import java. ...
- js进阶正则表达式15验证身份证号(|符号的使用:var reg=/^\d{17}[\d|X]$|^\d{15}$/)(str的方法substr)
js进阶正则表达式15验证身份证号(|符号的使用:var reg=/^\d{17}[\d|X]$|^\d{15}$/)(str的方法substr) 一.总结 1.|符号的使用:var reg=/^\d ...
- Thinking in UML 学习笔记(二)——UML核心视图之用例图
在UML中,需求模型又称为用例模型,它主要用于描述系统的功能性需求,即软件可以实现的功能,如登录.注册.入库.出库.查看库存报表.增加员工信息等.常规的用例建模一般包括两个组成部分:绘制用例图和编写用 ...