最短路-SPFA算法&Floyd算法
SPFA算法
算法复杂度
SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环。
SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 Bellman-Ford 相同,为O(nm)。
n为点数,m为边数
spfa也能解决权值为正的图的最短距离问题,且一般情况下比Dijkstra算法还好
算法步骤
queue <– 1
while queue 不为空
(1) t <– 队头
queue.pop()
(2)用 t 更新所有出边 t –> b,权值为w
queue <– b (若该点被更新过,则拿该点更新其他点)
代码实现
题目:https://www.acwing.com/problem/content/description/853/
#include<bits/stdc++.h>
using namespace std;
const int maxn=2e5+10;
typedef long long ll;
ll n,m;
typedef pair<int, int> PII;
int h[maxn],e[maxn],w[maxn],ne[maxn],idx;
int dist[maxn];
bool st[maxn]; void add(int x,int y,int c)
{
//权值记录
w[idx]=c;
//终点边记录
e[idx]=y;
//存储编号为idx的边的前一条边的编号
ne[idx]=h[x];
//代表以x为起点的边的编号,这个值会发生变化
h[x]=idx++;
} ll spfa()
{
ll i,j;
memset(dist,0x3f,sizeof(dist));
dist[1]=0; queue<int> q;
//将起点加入
q.push(1);
//标记已在集合
st[1]=true;
while(q.size())
{
int t=q.front();
q.pop();
//弹出后,不在集合
st[t]=false;
for(i=h[t];i!=-1;i=ne[i])
{
//获得终点
j=e[i];
//判断距离
if(dist[j]>dist[t]+w[i])
{
//更新距离
dist[j]=dist[t]+w[i];
//判断终点是否在集合
if(!st[j])
{
//加到集合,继续更新他到其他点的最短距离
q.push(j);
st[j]=true;
}
}
}
}
//如果说原点到终点n的距离还是无穷,则代表到达不了
if(dist[n]==0x3f3f3f3f)
return -1;
else
return dist[n];
} int main()
{
ll i,j;
cin>>n>>m;
//初始化h数组为-1,目的是为ne数组赋值
memset(h,-1,sizeof(h));
while(m--)
{
int x,y,z;
cin>>x>>y>>z;
//加边
add(x,y,z);
}
ll ans=spfa();
if(ans==-1)
cout<<"impossible";
else
cout<<ans;
return 0;
}
SPFA判断负环
求负环方法
统计当前每个点的最短路中所包含的边数,如果某点的最短路所包含的边数大于等于n,则也说明存在环。
算法步骤
①初始化要将所有点都插入到队列中
②增加一个cnt数组,来记录走的边个数
③若dist[j] > dist[t] + w[i],则表示从t点走到j点能够让权值变少,因此进行对该点j进行更新,并且对应cnt[j] = cnt[t] + 1,往前走一步
注意:该题是判断是否存在负环,并非判断是否存在从1开始的负环,因此需要将所有的点都加入队列中,更新周围的点
代码实现
题目:https://www.acwing.com/problem/content/description/854/
#include<bits/stdc++.h>
using namespace std;
const int maxn=2e5+10;
typedef long long ll;
ll n,m;
typedef pair<int, int> PII;
int h[maxn],e[maxn],w[maxn],ne[maxn],idx;
int dist[maxn],cnt[maxn];
bool st[maxn]; void add(int x,int y,int c)
{
//权值记录
w[idx]=c;
//终点边记录
e[idx]=y;
//存储编号为idx的边的前一条边的编号
ne[idx]=h[x];
//代表以x为起点的边的编号,这个值会发生变化
h[x]=idx++;
} bool spfa()
{
ll i,j;
queue<int> q;
//将所有点加入队列
for(i=1;i<=n;i++)
{
q.push(i);
st[i]=true;
}
while(q.size())
{
int t=q.front();
q.pop();
st[t]=false;
for(i=h[t];i!=-1;i=ne[i])
{
j=e[i];
//dist数组不用初始化,是因为如果为负的就进行更新,才能找出负环
if(dist[j]>dist[t]+w[i])
{
dist[j]=dist[t]+w[i];
//边数更新
cnt[j]=cnt[t]+1;
//大于n-1条边,代表有负环
if(cnt[j]>=n)
return true;
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
return false;
} int main()
{
ll i,j;
cin>>n>>m;
//初始化h数组为-1,目的是为ne数组赋值
memset(h,-1,sizeof(h));
while(m--)
{
int x,y,z;
cin>>x>>y>>z;
//加边
add(x,y,z);
}
//堆优化版的Dijkstra if(spfa())
cout<<"Yes";
else
cout<<"No";
return 0;
}
Floyd算法
原理
多源汇最短路问题
算法步骤
①初始化d
②k, i, j 去更新d
代码实现
题目:https://www.acwing.com/problem/content/description/856/
#include<bits/stdc++.h>
using namespace std;
int n,m,k;
const int maxn=220,INF=0x3f3f3f3f;
int d[maxn][maxn]; void floyd()
{ for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
} } int main()
{
int i,j;
cin>>n>>m>>k;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(i==j)
d[i][j]=0;
else
d[i][j]=INF;
}
} while(m--)
{
int x,y,z;
cin>>x>>y>>z;
d[x][y]=min(d[x][y],z);
}
floyd(); while(k--)
{
int x,y;
cin>>x>>y;
if(d[x][y]>INF/2)
cout<<"impossible"<<endl;
else
cout<<d[x][y]<<endl;
} return 0;
}
最短路总结
最短路-SPFA算法&Floyd算法的更多相关文章
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- SPFA和FLOYD算法如何打印路径
早晨碰到了一题挺裸的最短路问题需要打印路径:vijos1635 1.首先说说spfa的方法: 其实自己之前打的最多的spfa是在网格上的那种,也就是二维的 一维的需要邻接表+queue 以及对于que ...
- Dijkstra、Bellman_Ford、SPFA、Floyd算法复杂度比较
参考 有空再更新下用c++, 下面用的Java Dijkstra:适用于权值为非负的图的单源最短路径,用斐波那契堆的复杂度O(E+VlgV) BellmanFord:适用于权值有负值的图的单源最短路径 ...
- 多源最短路径算法—Floyd算法
前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...
- [链接]最短路径的几种算法[迪杰斯特拉算法][Floyd算法]
最短路径—Dijkstra算法和Floyd算法 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算 ...
- 只有5行代码的算法——Floyd算法
Floyd算法用于求一个带权有向图(Wighted Directed Graph)的任意两点距离的算法,运用了动态规划的思想,算法的时间复杂度为O(n^3).具体方法是:设点i到点j的距离为d[i][ ...
- 图的最短路径算法-- Floyd算法
Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][ ...
- (转)最短路算法 -- Floyd算法
转自:http://blog.51cto.com/ahalei/1383613 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程 ...
- 最短路径---Dijkstra/Floyd算法
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...
随机推荐
- 【基础】1001_Hello,World!
题目相关 [题目描述] 编写一个能够输出"Hello,World!"的程序,这个程序常常作为一个初学者接触一门新的编程语言所写的第一个程序,也经常用来测试开发.编译环境是否能够正常 ...
- 使用 Admission Webhook 机制实现多集群资源配额控制
1 要解决的问题 集群分配给多个用户使用时,需要使用配额以限制用户的资源使用,包括 CPU 核数.内存大小.GPU 卡数等,以防止资源被某些用户耗尽,造成不公平的资源分配. 大多数情况下,集群原生的 ...
- 瞄到BindingGroup用法
文章转载于https://www.cnblogs.com/dangnianxiaoqingxin/p/12653988.html 2.BindingGroup的使用 public class MyCl ...
- ORACLE的还原表空间UNDO写满磁盘空间,解决该问题的具体步骤
产生问题的原因主要以下两点:1. 有较大的事务量让Oracle Undo自动扩展,产生过度占用磁盘空间的情况:2. 有较大事务没有收缩或者没有提交所导制:说明:本问题在ORACLE系统管理中属于比较正 ...
- 晋升新一线的合肥,跨平台的.NET氛围究竟如何?
大伙可能不知道,2020年合肥已经成功晋升为新一线城市了.本文通过对目前合肥.NET招聘信息以及公众号的相关数据的分析来看下目前合肥.NET的大环境.就着2020中国.NET开发者峰会的顺利举行的东风 ...
- 【Java基础】反射
反射 反射的概述 反射(Reflection)是被视为动态语言的关键,反射机制允许程序在执行期借助 Reflection API 取得任何类的内部信息,并能直接操作任意对象的内部属性和方法. 加载完类 ...
- 从Java的字符串池、常量池理解String的intern()
前言 逛知乎遇到一个刚学Java就会接触的字符串比较问题: 通常,根据"==比较的是地址,equals比较的是值"介个定理就能得到结果.但是String有些特殊,通过new Str ...
- MyBatis初级实战之二:增删改查
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- 内存性能测试 Memtester+mbw
Memtester简单介绍 Memtester主要是捕获内存错误和一直处于很高或者很低的坏位, 其测试的主要项目有随机值,异或比较,减法,乘法,除法,与或运算等等. 通过给定测试内存的大小和次数, 可 ...
- 使用msys2在window下构建和使用Linux的软件
目录 前言 安装 使用 总结 前言 在window下构建Linux编译环境是很常见的,以前用过mingw弄过差不多的环境. 但是使用msys2后就根本停不下来咯,太好用咯. 安装 去官网下载吧,安装跟 ...