LIS(nlogn)算法描述//线性DP经典类型
题目描述
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是\le 50000≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入格式
11行,若干个整数(个数\le 100000≤100000)
输出格式
22行,每行一个整数,第一个数字表示这套系统最多能拦截多少导弹,第二个数字表示如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入输出样例
389 207 155 300 299 170 158 65
6
2
说明/提示
为了让大家更好地测试n方算法,本题开启spj,n方100分,nlogn200分
看了几篇博客,讲的都是最长上升子序列的nlogn 解法:只是简单的讲了是 贪心+DP
贪心 :大部分是这样证明的:
当你从一串数中构造一个最长子序列,在选择数时 要尽量选择最大的数字作为下一个数字,因为大的数字为后续选择提供了更多选择,从而使序列变得更长;
当你这次选的数字比正在构造的最后一个数字大时,找到比你这次选的数字小于等于的地方,用这个数字替换原先存在的数字,而且,在这个替换的数字后的数字不要删掉。
形如下面这个样例:
这个样例展示的是《《《最长不上升子序列》》》
一组样例:
//90 103 99 83 102 70 86 70 99 71
//结果是:5
在构造的序列变化是:
90
103
103 99
103 99 83
103 102 83
103 102 83 70
103 102 86 70
103 102 86 70 70
103 102 99 70 70
103 102 99 71 70 //显然最后得到的不一定是真实应该得到的子序列;
103 99 83 70 70//真实应该得到的子序列
明显可以看出:真实的子序列中的数字都是曾经在此位置的数字。
将这个位置替换,其实只是在原先位置更换了一个新的用于比较的标签,因为这个新的标签更大,为后边提供了更长的可能。
此题AC代码:lower_bound(begin(),end(),x,greater<int>()); 通过greater<int>()改变比较方向。
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
vector<int>a,b,c; int main ()
{
int num,n=0;
while(cin>>num)
{
n++;
a.push_back(num);
}
n--;
for(int i=0;i<=n;i++)
{
int it=upper_bound(b.begin(),b.end(),a[i],greater<int>())-b.begin();
//cout<<it<<endl;
if(it==b.size())
b.push_back(a[i]);
else
{
b[it]=a[i];
}
int itn=lower_bound(c.begin(),c.end(),a[i])-c.begin();
if(itn==c.size())
c.push_back(a[i]);
else
c[itn]=a[i];
}
//for(auto itm:b)
// cout<<itm<<endl;
cout<<b.size()<<endl;
cout<<c.size();
return 0;
}
一个变式题目:
N位同学站成一排,音乐老师要请其中的(N-KN−K)位同学出列,使得剩下的KK位同学排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2,…,K1,2,…,K,他们的身高分别为T_1,T_2,…,T_KT1,T2,…,TK, 则他们的身高满足T_1<...<T_i>T_{i+1}>…>T_K(1 \le i \le K)T1<...<Ti>Ti+1>…>TK(1≤i≤K)。
你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
输入格式
共二行。
第一行是一个整数N(2 \le N \le 100)N(2≤N≤100),表示同学的总数。
第二行有nn个整数,用空格分隔,第ii个整数T_i(130 \le T_i \le 230)Ti(130≤Ti≤230)是第ii位同学的身高(厘米)。
输出格式
一个整数,最少需要几位同学出列。
输入输出样例
8
186 186 150 200 160 130 197 220
4
数据范围非常小,可以枚举任何一个值,左边取最长上升子序列,右边取最长下降子序列
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int a[105];
int n;
int lis_1(int m)
{
vector<int>b;
for(int i=1;i<=m;i++)
{
int it=lower_bound(b.begin(),b.end(),a[i])-b.begin();
if(it==b.size())
b.push_back(a[i]);
else
b[it]=a[i];
}
return b.size();
}
int lis_2(int m)
{
vector<int>c;
for(int i=m;i<=n;i++)
{
int it=lower_bound(c.begin(),c.end(),a[i],greater<int>())-c.begin();
if(it==c.size())
c.push_back(a[i]);
else
c[it]=a[i];
}
return c.size();
} int main ()
{ cin>>n;
int ans=n;
for(int i=1;i<=n;i++)
cin>>a[i];
for(int i=1;i<=n;i++)
{
ans=min(ans,n+1 - lis_1(i) - lis_2(i));
}
cout<<ans<<endl; return 0;
}
LIS(nlogn)算法描述//线性DP经典类型的更多相关文章
- lis nlogn算法
当前所在位的最长上升子序列只和前面一个字符有关 #include <iostream> #include <algorithm> using namespace std; ]; ...
- POJ 1631 Bridging signals(LIS O(nlogn)算法)
Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...
- nyoj44 子串和 线性DP
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...
- 线性DP总结(LIS,LCS,LCIS,最长子段和)
做了一段时间的线性dp的题目是时候做一个总结 线性动态规划无非就是在一个数组上搞嘛, 首先看一个最简单的问题: 一,最长字段和 下面为状态转移方程 for(int i=2;i<=n;i++) { ...
- 最长上升子序列(LIS)长度的O(nlogn)算法
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素 ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- 线性DP LIS浅谈
LIS问题 什么是LIS? 百度百科 最长上升子序列(Longest Increasing Subsequence,LIS),在计算机科学上是指一个序列中最长的单调递增的子序列. 怎么求LIS? O( ...
- AT2827 最长上升子序列LIS(nlogn的DP优化)
题意翻译 给定一长度为n的数列,请在不改变原数列顺序的前提下,从中随机的取出一定数量的整数,并使这些整数构成单调上升序列. 输出这类单调上升序列的最大长度. 数据范围:1<=n<=10 ...
- 线性DP详解
顾名思义,线性DP就是在一条线上进行DP,这里举一些典型的例子. LIS问题(最长上升子序列问题) 题目 给定一个长度为N的序列A,求最长的数值单调递增的子序列的长度. 上升子序列B可表示为B={Ak ...
随机推荐
- springboot项目打war包流程
目前,前后端分离的架构已成主流,因此使用springboot构建应用是非常快速的,项目发布到服务器上的时候,只需要打成一个jar包,然后通过命令 : java -jar jar包名称即可启动服务了:但 ...
- 意想不到,这个神奇的bug让我加班到深夜
给大家分享一个近期解决的线上问题,起因是这样的,近期参与公司的一个项目,工程量很大,代码编写测试过后终于到了紧张的上线时刻. 项目上线 上线前照例忐忑不安了一番,因为工程量比较大,预估可能不会很顺利, ...
- 【剑指 Offer】04.二维数组中的查找
题目描述 在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...
- selenium自动化 | 借助百度AI开放平台识别验证码登录职教云
#通过借助百度AI开放平台识别验证码登录职教云 from PIL import Image from aip import AipOcr import unittest # driver.get(zj ...
- (二)数据源处理1-configparser读取.ini配置文件
import osimport configparsercurrent_path =os.path.dirname(__file__)#获取config当前文件路径config_file_path = ...
- Trollcave-suid提权
一 扫描端口 扫描开放端口:nmap -sV -sC -p- 192.168.0.149 -oA trollcave-allports 扫描敏感目录:gobuster dir -u http://19 ...
- 鸿蒙的fetch请求加载聚合数据的前期准备工作-手动配置网络权限
目录: 1.双击打开"config.json"文件 2.找到配置网络访问权限位置1 3.配置内容1 4.默认访问内容是空的 5.添加配置内容2 6.复制需要配置的网络二级URL 7 ...
- 2V升3V芯片,输入2V输出3V可达1A
PW5328B是一个恒定频率, 6引脚 SOT23电流模式升压转换器,用于小型低功耗应用. PW5328B的开关频率为 1.2MHz,允许使用微小的.低成本的电容器和电感器.内部软启动导致小涌流和延长 ...
- BeetleX大数据之产品分析服务
数据规模过于庞大?数据标签过多难以管理?增加新的分析维度需要配置?这些beetlex.io都能轻松解决,即导即用,数据标签自动管理,轻易实现多种维度数据分析处理.接下介绍BeetleX针对产品 ...
- 六个你不知道的PR快捷键,拯救你的剪辑效率
5G时代到来,会剪辑视频的人,无论在校园还是未来步入职场都很吃香.对于普通人来说,视频处理也成为了一个通用技能.PR是我们大多数人剪辑中,经常会用到的剪辑工具,之前的文章中已经给大家总结了pr的一些提 ...