LeetCode 95 | 构造出所有二叉搜索树
今天是LeetCode专题第61篇文章,我们一起来看的是LeetCode95题,Unique Binary Search Trees II(不同的二叉搜索树II)。
这道题的官方难度是Medium,点赞2298,反对160,通过率40.5%。我也仿照steam当中游戏评论的分级,给LeetCode中的题目也给出一个评级标准。按照这个点赞和反对的比例,这道题可以评到特别好评。从题目内容上来说,这是一道不可多得基础拷问的算法题,看着不简单,做起来也不简单,但看了题解之后,你会发现也没你想象得那么难。
题意
给定一个n,表示1到n这n个数字,要求用这n个数构建二叉搜索树(Binary Search Tree)简称BST,要求我们构建出所有不同的二叉搜索树。
样例
Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
从这个case当中我们可以看到,当n=3的时候,二叉搜索树一共有5中不同的情况。为了方便展示,Output当中展示的内容是这些树中序遍历的结果。但实际上我们要返回的是树根节点构成的list。
哦哦,对了题目当中还有一个n <= 8的条件,所以如果你是一个狼人的话,也可以把所有的情况都手动实现。
解法
这道题我感觉官方难得给的有点低了,应该可以算得上是Hard了。拿到手我们思路没多少,但是发现的问题却一大堆。比如说我们怎么构建这些BST,并且怎么判断两颗BST是否重复呢?难道要整个遍历一遍之后,一个节点一个节点地判断是否相同吗?显然这也太耗时了,而且编码也不容易。举个例子[2, 1, 3]和[2, 3, 1]生成的BST是一样的,这种情况很难解决。
即使我们解决了这个问题,那么又怎么样保证我们可以顺利找到所有的答案,而不会有所遗漏呢?这两个核心的问题很难回答,并且你会发现越想越复杂。
这个有点像什么呢?就好像是古代行军打仗,攻打一个异常坚固的堡垒,正面攻坚可能非常困难,我们想出来的办法都在敌人的预料之中,总能找到破解之道。这个时候就需要我们有敏锐的意识,就好像是一个经验丰富的老将,观察地形之后发现强攻不可为,那么自然就会退下来想一想其他的办法。
我们做题也是一样,正面硬刚做不出来,再耗下去也不会有好办法,往往就需要出奇制胜了。
我们试着把问题缩小,化整为零,如果n=1,那么很简单,BST就只有一种,这个是我们都知道的东西。如果n=2呢,也不难,只有两种,无非是[1, 2]和[2, 1]。这时候我们停住,来思考一个问题,n=2的情况和n=1的情况有什么区别呢?
如果仔细想,会发现其实没什么区别, 我们只不过是在n=1的情况当中加入了2这个数字而已。同理,我们发散一下n=k和n=k+1的时候生成的BST之间有什么关系呢?如果我们知道了n=k时候的所有BST,可不可以利用这个关系生成n=k+1时的所有结果呢?
当然是可以的,实际上这也是一个很好的做法。这是一种最基本的二叉树,假设我们要往其中插入一个最大的节点,我们很容易发现,一共有三种方法。

第一种方法将原搜索树作为新节点的左孩子节点。

第二种方法是将新的节点插入根节点的右侧,代替根节点的右孩子。由于这个新加入的节点大于其他所有节点,所以根节点的右孩子会变成它的左孩子。

最后一种方法就是将它变成叶子节点,也就是放在最底层。

我们稍加思考就可以想明白,如果要把一个最大的元素插入BST,那么它只能够放在最右侧的树分支上。也就是说当我们从n=k的情况推导k+1时,根据最右侧链路长度的不同,会衍生出多个解来。只要抓住了这一点,这其中的递推关系就很明显了。
我们用代码来实现这个想法,思路虽然简单,但是实现起来要复杂一些,有很多细节需要考虑。我在这里不一一列举了,大家查看代码当中的注释吧。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def generateTrees(self, n: int) -> List[TreeNode]:
ret = []
# 拷贝二叉树
def copyTree(node):
if node is None:
return None
u = TreeNode(node.val)
u.left = copyTree(node.left)
u.right = copyTree(node.right)
return u
def dfs(n):
# n=1只有一种情况
if n == 1:
ret.append(TreeNode(1))
return
dfs(n-1)
# 遍历n=k时的所有情况
for i in range(len(ret)):
u = ret[i]
node = TreeNode(n)
node.left = u
ret[i] = node
it = u
rank = 0
# 将n插入最右侧链路当中,有几种可以选择的位置,就会诞生几种新的放法
while it is not None:
node = TreeNode(n)
# 为了防止答案之间互不影响,所以需要把树拷贝一份
new = copyTree(u)
cur = new
# rank记录的是每一个解对应的n放入的深度
for _ in range(rank):
cur = cur.right
node.left = cur.right
cur.right = node
ret.append(new)
it = it.right
rank += 1
if n == 0:
return ret
dfs(n)
return ret
这种方法当然是可行的, 我们也成功做了出来。但是它也有很多问题,最大的问题就是细节太多,而且处理起来太麻烦了。那么有没有简单一点的方法呢?
我们来思考一个问题,我们通过递推和迭代从n=k构造出了n=k+1的情况,这一种构造和递推的思路非常巧妙。但问题是,我们构造和递推的方法难道只有这一种吗?能不能想出其他简便一些的构造和递推的方法呢?
既然我这么说,那么很显然,它是可以的,怎么做呢?
这要用到BST另外一个性质,我们都知道对于BST来说,它有一个性质是对于根节点来说,所有比它小的元素都出现在它的左侧,比它大的元素都在它的右侧。那么假如我们知道根节点是i,那么我们可以确定1到i-1出现在它的左子树,i+1到n出现在它的右子树。假设说我们已经得到了左右子树的所有情况,我们只需要把它们两两组合在一起,是不是就得到了答案了呢?
我这么说你们理解起来可能还是会觉得有些费劲,但是一旦查看代码,你们一定会为这段逻辑的简易性而折服,看起来实在是太简明也太巧妙了。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def generateTrees(self, n: int) -> List[TreeNode]:
ret = []
def dfs(l, r):
cur = []
if r < l:
cur.append(None)
return cur
# 枚举作为树根的元素
for i in range(l, r+1):
# 枚举左右子树的所有子树的构成情况
for u in dfs(l, i-1):
for v in dfs(i+1, r):
node = TreeNode(i)
node.left = u
node.right = v
cur.append(node)
return cur
if n == 0:
return ret
return dfs(1, n)
和上面的方法一样,这也是递归和构造方法的结合,但显然无论从运行效率上还是代码的简易性上,这种做法都要好不少,实实在在地体现了代码和逻辑之美。
今天的文章到这里就结束了,如果喜欢本文的话,请来一波素质三连,给我一点支持吧(关注、转发、点赞)。
- END -
原文链接,求个关注
LeetCode 95 | 构造出所有二叉搜索树的更多相关文章
- Leetcode:96. 不同的二叉搜索树
Leetcode:96. 不同的二叉搜索树 Leetcode:96. 不同的二叉搜索树 题目在链接中,点进去看看吧! 先介绍一个名词:卡特兰数 卡特兰数 卡特兰数Cn满足以下递推关系: \[ C_{n ...
- C# leetcode 之 096 不同的二叉搜索树
C# leetcode 之 096 不同的二叉搜索树 题目描述 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 二叉搜索树定义 左子树上所有节点的值小于根节点, 右子树上左右 ...
- 95题--不同的二叉搜索树II(java、中等难度)
题目描述:给定一个整数 n,生成所有由 1 ... n 为节点所组成的 二叉搜索树 . 示例如下: 分析:这一题需要对比LeetCode96题来分析:https://www.cnblogs.com/K ...
- [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化
Serialization is the process of converting a data structure or object into a sequence of bits so tha ...
- [LeetCode] Binary Search Tree Iterator 二叉搜索树迭代器
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the ro ...
- LeetCode 109——有序链表转化二叉搜索树
1. 题目 2. 解答 2.1. 方法一 在 LeetCode 108--将有序数组转化为二叉搜索树 中,我们已经实现了将有序数组转化为二叉搜索树.因此,这里,我们可以先遍历一遍链表,将节点的数据存入 ...
- LeetCode 109. 有序链表转换二叉搜索树(Convert Sorted List to Binary Search Tree)
题目描述 给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定的有序链表: ...
- [LeetCode] 109. 有序链表转换二叉搜索树
题目链接 : https://leetcode-cn.com/problems/convert-sorted-list-to-binary-search-tree/ 题目描述: 给定一个单链表,其中的 ...
- LeetCode 中级 - 有序链表转换二叉搜索树(109)
给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定的有序链表: [-10 ...
随机推荐
- C/C++编程笔记:一张思维导图,带你总结C语言全部知识点!
很多小伙伴想要好好地学习一下C语言的知识,但是又不知道怎么学,应该学哪一些C语言的知识,笔者在网上看到了这一张C语言的比较完善的C语言的学习路线图,有兴趣的小伙伴可以保存起来哈! C语言是面向过程的, ...
- 细说selenium的等待条件
selenium的显示等待 在进行UI自动化测试的时候,我们为了保持用例的稳定性,往往要设置显示等待,显示等待就是说明确的要等到某个元素的出现或者元素的某些条件出现,比如可点击.可见等条件,如果在规定 ...
- C++ Json工具--Jsoncpp用法简介
文章目录 Json简介 用法简介 数据类型 C++代码示例 代码执行输出结果 JSON在线解析及格式化验证 - JSON.cn Json简介 JSON(JavaScript Object Notati ...
- MyFirstJavaWeb
源代码: Register.jsp <%@ page language="java" contentType="text/html; charset=utf-8&q ...
- zuul路由网关集成ssl,实现http到https的转变
1 前言 最近几天刚开始接触微信小程序的开发,才接触到了https的概念(微信小程序中的请求必须为https请求,不然请求无法成功).https算是对http的安全封装,在http的基础上加了ssl证 ...
- 线程安全&Java内存模型
目录 Java内存模型 关于线程安全 Volatile关键字 Synchronized锁 重入锁 Lock锁 死锁 乐观锁与悲观锁 乐观锁(适合多读场景) 悲观锁(适合多写场景) Java内存模型 J ...
- Springboot常用的注解
1.@Controller主要用来修饰类,用来处理http请求 2.@ResponseBody主要用来修饰类和方法.返回字符串和json数据,不用来返回模板. 3.@RestController主要用 ...
- ALGEBRA-前言
“当你读一页不到一个小时的话,可能是你读太快了” 哈哈 可以 慢慢品
- C#设计模式之17-中介者模式
中介者模式(Mediator Pattern) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/419 访问. 中介者模式 ...
- 记一次生产环境tomcat线程数打满情况分析
前言 旨在分享工作中遇到的各种问题及解决思路与方案,与大家一起学习. -- 学无止境, 加油 ! Just do it ! 问题描述 运行环境描述 tomcat-8.5 单节点(该应用集群20个节点) ...