[Python] Pandas 中 Series 和 DataFrame 的用法笔记
pandas模块中有两个重要的数据结构对象:Series和DataFrame。
使用这两个数据结构对象可以在计算机的内存中构建虚拟的数据库。
1. Series对象
Series是一种类似于NumPy模块创建的一维数组的对象,与一维数组不同的是,Series对象不仅包含数据元素,还包含一组与数据元素对应的行标签。
>>> import pandas as pd
>>> s = pd.Series(['短裤', '毛衣', '连衣裙', '牛仔裤'])
>>> print(s)
0 短裤
1 毛衣
2 连衣裙
3 牛仔裤
dtype: object
>>> s[2]
'连衣裙'
自定义元素的行标签
>>> s1 = pd.Series(['短裤', '毛衣', '连衣裙', '牛仔裤'], index = ['a001', 'a002', 'a003', 'a004'])
>>> s1[2]
'连衣裙'
>>> s1['a002']
'毛衣'
使用Series对象定义基于字典创建数据结构
>>> s2 = pd.Series({'a001':'短裤', 'a002':'毛衣', 'a003':'连衣裙', 'a004':'牛仔裤'})
>>> print(s2)
a001 短裤
a002 毛衣
a003 连衣裙
a004 牛仔裤
dtype: object
2. DataFrame对象
DataFrame是一种二维的数据结构对象,用该对象创建的数据结构在形式上类似于Excel表格。相比Series对象,DataFrame对象在实际工作中的应用更为广泛。
>>> df = pd.DataFrame([['短裤', 45], ['毛衣', 69], ['连衣裙', 119], ['牛仔裤', 99]])
>>> print(df)
0 1
0 短裤 45
1 毛衣 69
2 连衣裙 119
3 牛仔裤 99
自定义行标签和列标签
>>> df1 = pd.DataFrame([['短裤', 45], ['毛衣', 69], ['连衣裙', 119], ['牛仔裤', 99]], columns = ['产品', '单价'], index = ['a001', 'a002', 'a003', 'a004'])
>>> print(df1)
产品 单价
a001 短裤 45
a002 毛衣 69
a003 连衣裙 119
a004 牛仔裤 99
使用DataFrame对象可以基于字典创建数据结构
>>> df2 = pd.DataFrame({'产品':['短裤', '毛衣', '连衣裙', '牛仔裤'],'单价':[45, 69, 119, 99]})
>>> print(df2)
产品 单价
0 短裤 45
1 毛衣 69
2 连衣裙 119
3 牛仔裤 99
>>> df3 = pd.DataFrame({'产品':['短裤', '毛衣', '连衣裙', '牛仔裤'],'单价':[45, 69, 119, 99]}, index = ['a001', 'a002', 'a003', 'a004'])
>>> print(df3)
产品 单价
a001 短裤 45
a002 毛衣 69
a003 连衣裙 119
a004 牛仔裤 99
[Python] Pandas 中 Series 和 DataFrame 的用法笔记的更多相关文章
- Python之Pandas中Series、DataFrame
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Python之Pandas中Series、DataFrame实践
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Pandas中Series和DataFrame的索引
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...
- Pandas中Series与Dataframe的区别
1. Series Series通俗来讲就是一维数组,索引(index)为每个元素的下标,值(value)为下标对应的值 例如: arr = ['Tom', 'Nancy', 'Jack', 'Ton ...
- pandas中series和dataframe之间的区别
series结构有索引,和列名组成,如果没有,那么程序会自动赋名为None series的索引名具有唯一性,索引可以数字和字符,系统会自动将他们转化为一个类型object. dataframe由索引和 ...
- Pandas中Series与Dataframe的初始化
(一)Series初始化 1.通过列表,index自动生成 se = pd.Series(['Tom', 'Nancy', 'Jack', 'Tony']) print(se) 2.通过列表,指定in ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- pandas学习series和dataframe基础
PANDAS 的使用 一.什么是pandas? 1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的. 2.p ...
- pandas中的数据结构-DataFrame
pandas中的数据结构-DataFrame DataFrame是什么? 表格型的数据结构 DataFrame 是一个表格型的数据类型,每列值类型可以不同 DataFrame 既有行索引.也有列索引 ...
随机推荐
- 【Oracle】想查询相关的v$视图,但是提示表或视图不存在解决办法
原因是使用的用户没有相关的查询权限导致 解决办法: grant select any dictionary to 用户; --这个权限比较大 这个权限是最低的要求,但是可以访问到v$相关视图 ...
- Sqli - Labs 靶场笔记(一)
Less - 1: 页面: URL: http://127.0.0.1/sqli-labs-master/Less-1/ 测试: 1.回显正常,说明不是数字型注入, http://127.0.0.1/ ...
- ctfshow—web—web7
打开靶机 发现是SQL注入,盲注 过滤了空格符,可以用/**/绕过,抓包 直接上脚本 import requestss=requests.session()url='https://46a0f98e- ...
- DNS基础概要
dns服务系统由客户端和服务器组成,提供域名到ip地址的解析,或者提供ip地址到域名的逆向解析. 1.DNS域名空间 每个dns域名由分级的label构成,如www.sina.com.cn,由www. ...
- ASP.NET Core错误处理中间件[4]: 响应状态码页面
StatusCodePagesMiddleware中间件与ExceptionHandlerMiddleware中间件类似,它们都是在后续请求处理过程中"出错"的情况下利用一个错误处 ...
- 向HDFS中指定的文件追加内容,由用户指定内容追加到原有文件的开头或结尾。
1 import java.io.FileInputStream; 2 import java.io.IOException; 3 import java.text.SimpleDateFormat; ...
- Salt (cryptography)
Salt (cryptography) Here is an incomplete example of a salt value for storing passwords. This first ...
- (008)每日SQL学习:Oracle Not Exists 及 Not In 使用
今天遇到一个问题,not in 查询失效,我以为是穿越了,仔细查了点资料,原来理解有误! select value from temp_a a where a.id between 1 and 100 ...
- 消息队列扫盲(RocketMQ 入门)
消息队列扫盲 消息队列顾名思义就是存放消息的队列,队列我就不解释了,别告诉我你连队列都不知道似啥吧? 所以问题并不是消息队列是什么,而是 消息队列为什么会出现?消息队列能用来干什么?用它来干这些事会带 ...
- 在Ubuntu安装kubernetes
一.安装Docker 1. 配置Docker docker安装完成后需要配置cgroup驱动为systemd来增强稳定性 sudo vim /etc/docker/daemon.json { &quo ...