题解 洛谷 P4098 【[HEOI2013]ALO 】
考虑原序列中的每一个值作为构成最终答案的那个次大值,那么其所在的合法区间最大时,其对答案的贡献最大。
一个值作为最大值时有两个合法的最大区间,一个是左边第二个比其大的位置和右边第一个比其大的位置构成的区间,另一个是左边第一个比其大的位置和右边第二个比其大的位置构成的区间,这两个区间都是开区间。确定区间可以从小到大排序,用双向链表一个一个删除即可。
然后就将问题简化了,现在要解决给定一个值,求给定区间与其的异或最大值,可以对原序列建可持久化\(Trie\),查询时直接在\(Trie\)上贪心就行。
实现细节看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 3000010
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,tot,ans;
int a[maxn],p[maxn],pre[maxn],nxt[maxn];
int rt[maxn],t[maxn][2],cnt[maxn];
bool cmp(const int &x,const int &y)
{
return a[x]<a[y];
}
void insert(int x,int k,int &p)
{
cnt[++tot]=cnt[p],t[tot][0]=t[p][0],t[tot][1]=t[p][1];
p=tot,cnt[p]++;
if(k==-1) return;
insert(x,k-1,t[p][(x>>k)&1]);
}
int query(int ql,int qr,int k,int x)
{
if(k==-1) return 0;
int ch=((x>>k)&1)^1;
if(cnt[t[qr][ch]]-cnt[t[ql][ch]])
return query(t[ql][ch],t[qr][ch],k-1,x)|(1<<k);
else return query(t[ql][ch^1],t[qr][ch^1],k-1,x);
}
int main()
{
read(n);
for(int i=1;i<=n;++i) pre[i]=i-1,nxt[i]=i+1,p[i]=i;
for(int i=1;i<=n;++i)
read(a[i]),rt[i]=rt[i-1],insert(a[i],30,rt[i]);
sort(p+1,p+n+1,cmp);
for(int i=1;i<=n;++i)
{
int l=pre[p[i]],r=nxt[p[i]];
nxt[l]=r,pre[r]=l;
if(l) ans=max(ans,query(rt[pre[l]],rt[r-1],30,a[p[i]]));
if(r!=n+1) ans=max(ans,query(rt[l],rt[nxt[r]-1],30,a[p[i]]));
}
printf("%d\n",ans);
return 0;
}
题解 洛谷 P4098 【[HEOI2013]ALO 】的更多相关文章
- 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)
思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...
- P4098 [HEOI2013]ALO
最近这个家伙去哪了,为啥一直不更博客了呢?原来他被老师逼迫去补了一周的文化课,以至于不会把班里的平均分拉掉太多.好了,我们来看下面这道题目: P4098 [HEOI2013]ALO 题目描述 Welc ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 题解-洛谷P5217 贫穷
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...
随机推荐
- Java并发包JUC核心原理解析
CS-LogN思维导图:记录CS基础 面试题 开源地址:https://github.com/FISHers6/CS-LogN JUC 分类 线程管理 线程池相关类 Executor.Executor ...
- Python 简明教程 --- 19,Python 类与对象
微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 那些能用计算机迅速解决的问题,就别用手做了. -- Tom Duff 目录 上一节 我们介绍了Pyt ...
- 2020年IDEA破解激活码永久
我想很多做开发的小伙伴和小编一样,和往常一样开机搬砖. 打开idea的时候,会收到一个个提示,也是idea许可证过期啦,需要重新激活! 那怎么办呢?我最近发现了一个相对稳定的激活码 . 亲测可用.现在 ...
- 入门大数据---Anaconda安装
1. 什么是Anaconda? Anaconda是一个开源的Python发行版本,python是一个编译器,如果不使用Anaconda那么安装起来会比较痛苦,各个库之间的依赖性就很难连接的很好.Ana ...
- python用pandas遍历csv文件
import pandas as pd df = pd.read_csv('a.csv') for index, row in df.iterrows(): x, y = row['X'], row[ ...
- 洛谷 P4822 [BJWC2012]冻结
之前没学分层图,所以先咕了一下hiahiahia. 学完分层图了回来水写题解了. 这道题要用分层图来解.分层图就是在我们决策的时候,再建k层图,一共k+1层,层与层之间是有向边(这个很重要的),权值为 ...
- python基础--自定义模块、import、from......import......
自定义模块.import.from......import...... 1)模块的定义和分类 1.模块是什么? 我们知道一个函数封装了一个功能,软件可能是有多个函数组成的.我们说一个函数就是一个功能, ...
- debian10 安装 详解
准备 下载debian 下载页面,有3个iso,选择第一个,其他两个软件包,我们不需要. 制作启动盘 debian官方提供了一个工具,可以轻松制作启动盘,也可以用opensuse官方提供的一个工具ru ...
- hbase2.1.9 centos7 完全分布式 搭建随记
hbase2.1.9 centos7 完全分布式 搭建随记 这里是当初在三个ECS节点上搭建hadoop+zookeeper+hbase+solr的主要步骤,文章内容未经过润色,请参考的同学搭配其他博 ...
- 【经典DP】洛谷 P2782 友好城市
嘤嘤嘤,昨天两个文化课老师在上奥赛时招呼我(亲切交流),今天又要写工作报告,没时间写题解,希望今天能补上 友好城市 题目://洛谷那粘来的题面竟然能把格式粘过来 题目描述 有一条横贯东西的大河,河有笔 ...