题解 洛谷 P4098 【[HEOI2013]ALO 】
考虑原序列中的每一个值作为构成最终答案的那个次大值,那么其所在的合法区间最大时,其对答案的贡献最大。
一个值作为最大值时有两个合法的最大区间,一个是左边第二个比其大的位置和右边第一个比其大的位置构成的区间,另一个是左边第一个比其大的位置和右边第二个比其大的位置构成的区间,这两个区间都是开区间。确定区间可以从小到大排序,用双向链表一个一个删除即可。
然后就将问题简化了,现在要解决给定一个值,求给定区间与其的异或最大值,可以对原序列建可持久化\(Trie\),查询时直接在\(Trie\)上贪心就行。
实现细节看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 3000010
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,tot,ans;
int a[maxn],p[maxn],pre[maxn],nxt[maxn];
int rt[maxn],t[maxn][2],cnt[maxn];
bool cmp(const int &x,const int &y)
{
return a[x]<a[y];
}
void insert(int x,int k,int &p)
{
cnt[++tot]=cnt[p],t[tot][0]=t[p][0],t[tot][1]=t[p][1];
p=tot,cnt[p]++;
if(k==-1) return;
insert(x,k-1,t[p][(x>>k)&1]);
}
int query(int ql,int qr,int k,int x)
{
if(k==-1) return 0;
int ch=((x>>k)&1)^1;
if(cnt[t[qr][ch]]-cnt[t[ql][ch]])
return query(t[ql][ch],t[qr][ch],k-1,x)|(1<<k);
else return query(t[ql][ch^1],t[qr][ch^1],k-1,x);
}
int main()
{
read(n);
for(int i=1;i<=n;++i) pre[i]=i-1,nxt[i]=i+1,p[i]=i;
for(int i=1;i<=n;++i)
read(a[i]),rt[i]=rt[i-1],insert(a[i],30,rt[i]);
sort(p+1,p+n+1,cmp);
for(int i=1;i<=n;++i)
{
int l=pre[p[i]],r=nxt[p[i]];
nxt[l]=r,pre[r]=l;
if(l) ans=max(ans,query(rt[pre[l]],rt[r-1],30,a[p[i]]));
if(r!=n+1) ans=max(ans,query(rt[l],rt[nxt[r]-1],30,a[p[i]]));
}
printf("%d\n",ans);
return 0;
}
题解 洛谷 P4098 【[HEOI2013]ALO 】的更多相关文章
- 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)
思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...
- P4098 [HEOI2013]ALO
最近这个家伙去哪了,为啥一直不更博客了呢?原来他被老师逼迫去补了一周的文化课,以至于不会把班里的平均分拉掉太多.好了,我们来看下面这道题目: P4098 [HEOI2013]ALO 题目描述 Welc ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 题解-洛谷P5217 贫穷
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...
随机推荐
- 解决 React Native Android:app:validateSigningRelease FAILED 错误
RN 运行的时候报这个错这咋办:
- 洛谷 CF1012C Hills (动态规划)
题目大意:有n个山丘 , 可以在山丘上建房子 , 建房子的要求是 : 该山丘的左右山丘严格的矮于该山丘 (如果有的话),你有一架挖掘机,每单位时间可以给一个山丘挖一个单位的高度,问你想要建造 1,2, ...
- 入门大数据---SparkSQL常用聚合函数
一.简单聚合 1.1 数据准备 // 需要导入 spark sql 内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSe ...
- CImage显示位图与CDC双缓冲冲突,使用路径层解决.
2010年04月29日 星期四 20:35 位图闪的问题困扰我很久了,因为程序的需要,我显示位图的方式是CImage类. 如果从CImage转到CBitmap,之后使用Attach到是可以,但我发现这 ...
- win7旗舰版安装 oracle 10g 不能进入图形界面的问题
前阵子重装了系统,把dell机器自带的win7 64位(家庭版已升级旗舰版,装ORACLE正常)换回了32位系统,前两天因为一些软件开发的问题,需要把以前做的一个系统重新架起来,数据库用的是oracl ...
- QtableWidget用法流程
QtableWidget用法流程 作者:流火 日期:2020/5/10 QTableWidget的基本构造函数 QTableWidget 是QTableview的子类.主要去呗是QTableVie ...
- escape sequence "\c"
#include <stdio.h> int main() { printf("Hello World !\c"); return ; } [::@wjshan0808 ...
- (私人收藏)精美PPT模板
精美PPT模板 https://pan.baidu.com/s/1vsRnX5h7t3MZ7qdrFvuI1wsucr
- VMware Workstation安装centos
begin 2020年7月4日16:32:34 今天我们是食神,来做一道菜,名曰VMware Workstation安装centos. 首先我们需要准备好锅和食材. 锅和食材 锅:VMware Wor ...
- Mysql查询语句执行过程
Mysql查询语句执行过程 Mysql分为server层和存储引擎两部分,或许可以再加一层连接层 连接层(器) Mysql使用的是典型的C/S架构.连接器通过典型的TCP握手完成连接. 需要注 ...