LINK:矩阵填数

刚看到题目的时候感觉是无从下手的。

可以看到有n<=2的点 两个矩形。

如果只有一个矩形 矩形外的方案数容易计算考虑 矩形内的 必须要存在x这个最大值 且所有值<=x.

直接计算是不易的 需要讨论到底哪个位置有最大值 然后还有重复 很繁琐。可以直接容斥 可以求出<=x的方案数 <=x-1的方案数也可以求出 做差即可得到存在x出现的方案数。

考虑两个矩形 如果不交 那么显然是各算各的 如果相交 讨论相交的这部分到底存在x 然后进一步的讨论从而计算答案。

可以发现这个分类讨论并不繁琐 不过当n扩大的时候就不能这么做了。

在填数的时候 毫无疑问的是 把一些矩形的交拉出来单独讨论。因为这部分填数会对一些矩形后续的填数造成影响。

对于所有的这种面积求方案即可。n<=10 可以进行状压。

设f[i]表示 只有状态i的矩形进行交的面积 注意 他们的交不能和其他矩形再交 因为 这会影响到其他矩形。

求法:容斥 考虑先把大的交w就出来 对于w的子集显然也会统计到这部分答案 所以枚举子集一下将自己的这部分贡献给消掉即可。

把这些面积拉出来后 就可以尝试填数了 容易发现填数的时候 可以设状态j表示当前已经满足的矩形的状态。

这样对于所有的交dp一下就可以得到总方案数了

const int MAXN=15,N=1<<10;
int T,n,W,H,m;
int maxx;
int w[MAXN];
struct wy
{
int x,y,xx,yy;
wy(int s1=0,int s2=0,int s3=0,int s4=0){x=s1;y=s2;xx=s3;yy=s4;}
inline wy friend operator &(wy a,wy b)//两个矩形的交.
{
return wy(max(a.x,b.x),max(a.y,b.y),min(a.xx,b.xx),min(a.yy,b.yy));
}
inline int S()
{
if(x>xx||y>yy)return 0;
return (xx-x+1)*(yy-y+1);
}
}t[MAXN];
inline int ksm(int b,int p)
{
int cnt=1;
while(p){if(p&1)cnt=(ll)cnt*b%mod;b=(ll)b*b%mod;p=p>>1;}
return cnt;
}
int ans,f[N][N];//f[i][j]表示已经处理过集合为1~i 已经满足限制的集合为j的方案数.
int s[N],b[N],c[N],s1[N],s2[N];
signed main()
{
freopen("1.in","r",stdin);
get(T);
while(T--)
{
memset(f,0,sizeof(f));
memset(s,0,sizeof(s));
get(H);get(W);get(m);get(n);ans=0;
rep(1,n,i)
{
int get(x),get(y),get(xx),get(yy);
t[i]=wy(x,y,xx,yy),get(w[i]);
}
maxx=(1<<n)-1;
fep(maxx,1,i)
{
int minn=m,ww=0;
wy wn=wy(1,1,H,W);
rep(1,n,j)
if(i&(1<<(j-1)))
{
if(w[j]==minn)ww=ww|(1<<(j-1));
if(w[j]<minn)
{
minn=w[j];
ww=(1<<(j-1));
}
wn=wn&t[j];
}
int ss=wn.S();
s[i]+=ss;c[i]=ww;
for(int j=i&(i-1);j;j=i&(j-1))s[j]-=s[i];
ans+=s[i];
s2[i]=ksm(minn-1,s[i]);
s1[i]=(ksm(minn,s[i])-s2[i]+mod)%mod;
}
ans=W*H-ans;ans=ksm(m,ans);
f[0][0]=1;
rep(0,maxx-1,i)
{
rep(0,maxx,j)
{
if(!f[i][j])continue;
f[i+1][j]=(f[i+1][j]+(ll)f[i][j]*s2[i+1])%mod;
f[i+1][j|c[i+1]]=(f[i+1][j|c[i+1]]+(ll)f[i][j]*s1[i+1])%mod;
}
}
put((ll)f[maxx][maxx]*ans%mod);
}
return 0;
}

一本通 1783 矩阵填数 状压dp 容斥 计数的更多相关文章

  1. 【BZOJ5010】【FJOI2017】矩阵填数 [状压DP]

    矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定一个 h*w 的矩阵,矩阵的行 ...

  2. [BZOJ5010][FJOI2017]矩阵填数(状压DP)

    5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 45[Submit][Status][ ...

  3. bzoj2669 [cqoi2012]局部极小值 状压DP+容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...

  4. P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)

    题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...

  5. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

  6. codeforces 342D Xenia and Dominoes(状压dp+容斥)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...

  7. [清华集训2015 Day1]主旋律-[状压dp+容斥]

    Description Solution f[i]表示状态i所代表的点构成的强连通图方案数. g[i]表示状态i所代表的的点形成奇数个强连通图的方案数-偶数个强连通图的方案数. g是用来容斥的. 先用 ...

  8. NOIp模拟赛 巨神兵(状压DP 容斥)

    \(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DA ...

  9. uoj#37. 【清华集训2014】主旋律(状压dp+容斥)

    传送门 第一眼容斥,然后我就死活容不出来了-- 记\(f_i\)为点集\(i\)中的点强联通的方案数,那么就是总的方案数减去使\(i\)不连通的方案数 如果\(i\)不连通的话,我们可以枚举缩点之后拓 ...

随机推荐

  1. 2.Unity3d常用按键

    Unity3d常用按键和组合键: 1.鼠标左键:选中物体 2.鼠标中键:平移视角,和手型功能一样 3.鼠标右键:旋转观察角度 4.Alt+鼠标左键:旋转观察角度 5.Alt+鼠标右键:拉远拉近

  2. Jmeter系列(39)- Jmeter 分布式测试

    如果你想从头学习Jmeter,可以看看这个系列的文章哦 https://www.cnblogs.com/poloyy/category/1746599.html 为什么要做分布式 Jmeter 本身的 ...

  3. Dynamics CRM Data Encrytion error

    Dynamics CRM有两个Database,一个Content DB——xxxx_MSCRM,一个Config DB——MSCRM_CONFIG. 当Content DB从其他环境Restore回 ...

  4. Python-02 可视化之tkinter介绍

    1 控件介绍 1.1 Label import tkinter as tk # 使用Tkinter前需要先导入 window = tk.Tk() window.title('My Window') w ...

  5. python面向对象07/异常处理

    python面向对象07/异常处理 目录 python面向对象07/异常处理 1. 异常错误分类 2. 什么是异常? 3. 异常处理 4. 为什么要有异常处理 5. 异常处理的两种方式 1.if判断 ...

  6. Go的100天之旅-常量

    常量 简介 道可道,非常道.这里常道指的永恒不变的道理,常有不变的意思.顾名思义和变量相比,常量在声明之后就不可改变,它的值是在编译期间就确定的. 下面简单的声明一个常量: const p int = ...

  7. 足球动图gif(二)

  8. 集训作业 洛谷P1135 奇怪的电梯

    这个题我见过!!! 我之前在石油大学的网站上做练习赛,提高了很多,这个题是我第一次在比赛里见到深搜. 当时蒙蔽的一批,现在发现好简单…… 这个题和普通的深搜没什么区别,甚至可以说简单了,因为这个是1维 ...

  9. v-bind v-on 缩写

    Vue.js 为两个最为常用的指令提供了特别的缩写:

  10. 数据库分布式事务XA规范介绍及Mysql底层实现机制

    1. 引言 分布式事务主要应用领域主要体现在数据库领域.微服务应用领域.微服务应用领域一般是柔性事务,不完全满足ACID特性,特别是I隔离性,比如说saga不满足隔离性,主要是通过根据分支事务执行成功 ...