RDD提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,从而避免了中间结果的存储,大大降低了数据复制、磁盘IO和序列化开销。

  一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合,每个RDD可以分成多个分区,每个分区就是一个数据集片段,并且一个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算。

  RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,不能直接修改,只能基于稳定的物理存储中的数据集来创建RDD,或者通过在其他RDD上执行确定的转换操作(如map、join和groupBy)而创建得到新的RDD。RDD提供了一组丰富的操作以支持常见的数据运算,分为“行动”(Action)和“转换”(Transformation)两种类型,前者用于执行计算并指定输出的形式,后者指定RDD之间的相互依赖关系。

  两类操作的主要区别是,转换操作(比如map、filter、groupBy、join等)接受RDD并返回RDD,而行动操作(比如count、collect等)接受RDD但是返回非RDD(即输出一个值或结果)。RDD提供的转换接口都非常简单,都是类似map、filter、groupBy、join等粗粒度的数据转换操作,而不是针对某个数据项的细粒度修改。因此,RDD比较适合对于数据集中元素执行相同操作的批处理式应用,而不适合用于需要异步、细粒度状态的应用(比如Web应用系统、增量式的网页爬虫等)。

RDD典型的执行过程

  1. RDD读入外部数据源(或者内存中的集合)进行创建;
  2. RDD经过一系列的“转换”操作,每一次都会产生不同的RDD,供给下一个“转换”使用;
  3. 最后一个RDD经“行动”操作进行处理,并输出到外部数据源(或者变成Scala集合或标量)。

RDD采用了惰性调用,即在RDD的执行过程中,真正的计算发生在RDD的“行动”操作,对于“行动”之前的所有“转换”操作,Spark只是记录下“转换”操作应用的一些基础数据集以及RDD生成的轨迹,即相互之间的依赖关系,而不会触发真正的计算。

宽窄依赖:

(1)对输入进行协同划分,属于窄依赖。协同划分(co-partitioned)是指多个父RDD的某一分区的所有“键(key)”,落在子RDD的同一个分区内,不会产生同一个父RDD的某一分区,落在子RDD的两个分区的情况。

(2)对输入做非协同划分,属于宽依赖。对于窄依赖的RDD,可以以流水线的方式计算所有父分区,不会造成网络之间的数据混合。对于宽依赖的RDD,则通常伴随着Shuffle操作,即首先需要计算好所有父分区数据,然后在节点之间进行Shuffle。

阶段的划分:

  在DAG中进行反向解析,遇到宽依赖就断开,遇到窄依赖就把当前的RDD加入到当前的阶段中;将窄依赖尽量划分在同一个阶段中,可以实现流水线计算。

RDD的运行过程:

(1)创建RDD对象;

(2)SparkContext负责计算RDD之间的依赖关系,构建DAG;

(3)DAGScheduler负责把DAG图分解成多个阶段,每个阶段中包含了多个任务,每个任务会被任务调度器分发给各个工作节点(Worker Node)上的Executor去执行。

Source【厦门大学林子雨大数据实验室spark入门教程】http://dblab.xmu.edu.cn/blog/1709-2/

spark-2-RDD的更多相关文章

  1. [Spark] Spark的RDD编程

    本篇博客中的操作都在 ./bin/pyspark 中执行. RDD,即弹性分布式数据集(Resilient Distributed Dataset),是Spark对数据的核心抽象.RDD是分布式元素的 ...

  2. Spark核心—RDD初探

    本文目的     最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken).感觉需要记录点什么,才对得起自己.下面的内容主要是关于Spark核心-RDD的相关 ...

  3. 关于Spark中RDD的设计的一些分析

    RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Dat ...

  4. [Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子

    [Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子 from pyspark.sql.types import * schema = Struct ...

  5. spark中RDD的转化操作和行动操作

    本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当 ...

  6. Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、

    1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...

  7. [转]Spark学习之路 (三)Spark之RDD

    Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...

  8. Spark学习之路 (三)Spark之RDD

    一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...

  9. Spark之 RDD

    简介 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合. Resilien ...

  10. 解读Spark Streaming RDD的全生命周期

    本节主要内容: 一.DStream与RDD关系的彻底的研究 二.StreamingRDD的生成彻底研究 Spark Streaming RDD思考三个关键的问题: RDD本身是基本对象,根据一定时间定 ...

随机推荐

  1. 2020重新出发,MySql基础,MySql视图&索引&存储过程&触发器

    @ 目录 视图是什么 视图的优点 1) 定制用户数据,聚焦特定的数据 2) 简化数据操作 3) 提高数据的安全性 4) 共享所需数据 5) 更改数据格式 6) 重用 SQL 语句 MySQL创建视图 ...

  2. 双操作系统(ubuntu/windows7)安装教程

    前言 前两天出于项目原因,本人心血来潮地给久经战场的电脑老大哥找个小媳妇,哈哈哈,装了两个系统.分别是用了多年的win7和接触不久的Ubuntu,在其中遇到了一些坑,在此记录下来,希望能给自己和大家带 ...

  3. AtCoder Beginner Contest 177 题解

    AtCoder Beginner Contest 177 题解 目录 AtCoder Beginner Contest 177 题解 A - Don't be late B - Substring C ...

  4. Apache Pulsar 2.6.1 版本正式发布:2.6.0 功能增强版,新增 OAuth2 支持

    在 Apache Pulsar 2.6.0 版本发布后的 2 个月,2020 年 8 月 21 日,Apache Pulsar 2.6.1 版本正式发布! Apache Pulsar 2.6.1 修复 ...

  5. java安全编码指南之:Mutability可变性

    目录 简介 可变对象和不可变对象 创建mutable对象的拷贝 为mutable类创建copy方法 不要相信equals 不要直接暴露可修改的属性 public static fields应该被置位f ...

  6. stack 数据结构

    栈定义 栈:后进先出(永远从栈顶取元素)LIFO last-in-first-out   栈实现 class Stack { constructor() { this.items = [] this. ...

  7. Oracle的timestamp字段更新实验 结论:只有逐条更新才能保证timestamp字段有差别,批量更新只会得到一致的时间,此操作无关时间精度.

    有这么一张表: create table hy_testtime( id number(6,0) not null primary key, name nvarchar2(20) not null, ...

  8. 在Oracle中快速创建一张百万级别的表,一张十万级别的表 并修改两表中1%的数据 全部运行时间66秒

    万以下小表做性能优化没有多大意义,因此我需要创建大表: 创建大表有三种方法,一种是insert into table selec..connect by.的方式,它最快但是数据要么是连续值,要么是随机 ...

  9. Linux下mysql安装记录

    1.MySQL下载路径:https://dev.mysql.com/downloads/ Linux下的安装步骤:http://www.runoob.com/linux/mysql-install-s ...

  10. 获取JSO字符串的key和value值

    import com.alibaba.fastjson.JSON; import java.util.ArrayList; import java.util.HashMap; import java. ...