数据可视化之PowerQuery篇(十四)产品关联度分析
https://zhuanlan.zhihu.com/p/64510355
逛超市的时候,面对货架上琳琅满目的商品,你会觉得这些商品的摆放,或者不同品类的货架分布是随机排列的吗,当然不是。
应该都听说过啤酒与尿布的故事,这两个表面上毫不相关的商品,在超市中摆放在一起时二者的销量都大幅度提升。这里不论这个案例的真实性如何,但它对理解产品之间的关联十分形象,好的故事总是更有传播度。
购买某种商品的客户,对另一种商品,相对于其他商品,有更大的购买概率,这两种商品就具有更高的关联度,为了提高销售额,应尽可能将二者摆放到一起;网店也可以将一种产品放在另一种产品的推荐页中。
而要实现这个目的,首先就要挖掘出哪些商品之间存在更大的关联度。
下面用PowerBI来进行关联度分析。
假设一家超市的十几个产品的销售数据,我们要计算出购买产品A的客户中,有多少客户也同时购买了产品B?这些客户购买了产品B的金额有多大?
客户关联度
由于要分析的产品A和产品B都在产品表中,为了分别计算相互不影响,复制一个产品表,这里命名为'关联产品表',与订单表建立虚线关系,数据模型如下图,
将产品表中的产品名称拖入到表格中,作为产品A,然后利用下面这个度量值计算产品A的客户数量,
[客户数]=COUNTROWS(VALUES('订单表'[客户ID]))
然后利用关联产品表中的产品名称,生成一个切片器,以便选择不同的产品,关联产品假设为产品B。
下面这个是计算关联分析的重点,购买了A的客户中,有多少客户也购买了产品B?
也就是同时购买A和B的客户数,度量值如下:
同时购买A和B的客户数 =
VAR Bcustomer=
CALCULATETABLE(
VALUES('订单表'[客户ID]),
USERELATIONSHIP('关联产品表'[产品ID],'订单表'[产品ID]),
ALL('产品表')
)
RETURN CALCULATE([客户数],Bcustomer)
通过以上两个度量值相除,就可以计算出关联产品的客户占比,
关联客户占比 = DIVIDE([同时购买A和B的客户数],[客户数])
把上面这几个度量值放入表格中,通过点击不同的关联产品,就可以自动计算出产品A和产品B之间的重复客户占比,

但是两个产品的客户的重合度高,不代表带来的销售额就更高,所以还要分析一下,购买A的客户中,同时购买的产品B销售额有多少?通过金额这个维度来分析一下关联性。
销售金额关联性
先来写两个简单的度量值,产品A的销售额和产品B的销售额:
产品A的销售额:
销售额=SUM('订单表'[销售金额])
产品B的销售额,
关联产品B的销售额 =
CALCULATE([销售额],
USERELATIONSHIP('关联产品表'[产品ID],'订单表'[产品ID]),
ALL('产品表') )
由于产品B来自于关联客户表,而关联客户表与订单表是虚线关系,所以用 USERELATIONSHIP来激活关系。它主要是为了计算购买产品A的客户中,购买了产品B的金额有多少?
然后就可以计算同时购买A和B的客户中,购买产品B的金额。
A客户购买B的金额 =
VAR Acustomer=
CALCULATETABLE(VALUES('订单表'[客户ID]))
VAR Bcustomer=
CALCULATETABLE(
VALUES('订单表'[客户ID]),
USERELATIONSHIP('关联产品表'[产品ID],'订单表'[产品ID]),
ALL('产品表'))
RETURN
CALCULATE([关联产品B的销售额],
NATURALINNERJOIN(Acustomer,Bcustomer)))
这个度量值的含义是,先找出产品A和产品B的客户列表,然后通过 NATURALINNERJOIN函数找出这两个客户列表的交集,也就是同时购买了这两种产品的客户,然后计算这些客户的产品B销售额就可以了。
同样把这个度量值放到表格中,可以看出关联销售额,

通过这个表格也可以看出,客户重合比例高的两个产品,带来的关联产品的销售额并不一定高,这个跟产品价格、购买数量都有关系。
关联度四象限分析
通过上面的几个度量值,获得了相关分析的数据,为了更直观的展示出产品之间的关联度,这里使用四象限分析法来展示。
其实就是制作一个散点图,将两个维度:客户占比作为Y轴,关联产品销售额作为X轴,并按客户占比、关联产品销售额的平均线作为恒线,切割出四个象限,并利用动态配色(请参考:利用这个新功能,轻松实现图表的动态配色)分别为每个象限的数据设置不同的颜色,显示效果如下:

出现在第一象限(右上角)的产品,就是与切片器选中的产品不仅客户重合度高,而且带来的销售额也更高,具有高相关性,应该特别关注。
该模型还可以接着分析某一段时间的关联性,比如促销期间、节假日期间,客户的购买特征很可能与平时是不同的。

至此,一个简单的关联分析模型建立完成,根据关联产品的不同,动态显示不同的高相关度产品,并且可以随着时间段的变化而变化,
如果有客户画像、销售地点等数据,还可以将这些数据作为外部筛选器,挖掘出不同客户、不同地域的关联产品组合。
当然,这个模型挖掘的关联产品只是初步结果,还应对这个结果进行进一步验证,避免因偶然或人为因素导致的关联性,比如是否有某两种商品的捆绑销售活动等。
关联分析是非常有用的数据挖掘方式,能够帮助企业进行精准产品营销、产品组合以及发现更多潜在客户,真正的利用数据,为企业创造价值。
数据可视化之PowerQuery篇(十四)产品关联度分析的更多相关文章
- 数据可视化之PowerQuery篇(四)二维表转一维表,看这篇文章就够了
https://zhuanlan.zhihu.com/p/69187094 数据分析的源数据应该是规范的,而规范的其中一个标准就是数据源应该是一维表,它会让之后的数据分析工作变得简单高效. 在之前的文 ...
- 数据可视化之 图表篇(四) 那些精美的Power BI可视化图表
之前使用自定义图表,每次新打开一个新文件时,都需要重新添加,无法保存,在PowerBI 6月更新中,这个功能得到了很大改善,可以将自定义的图表固定在内置图表面板上了. 添加自定义图表后,右键>固 ...
- 数据可视化之PowerQuery篇(十一)使用Power BI进行动态帕累托分析
https://zhuanlan.zhihu.com/p/57763423 上篇文章介绍了帕累托图的用处以及如何制作一个简单的帕累托图,在 PowerBI 中可以很方便的生成,但若仅止于此,并不足以体 ...
- 数据可视化之PowerQuery篇(十八)Power BI数据分析应用:结构百分比分析法
https://zhuanlan.zhihu.com/p/113113765 本文为星球嘉宾"海艳"的PowerBI数据分析工作实践系列分享之二,她深入浅出的介绍了PowerBI ...
- 数据可视化之PowerQuery篇(十九)PowerBI数据分析实践第三弹 | 趋势分析法
https://zhuanlan.zhihu.com/p/133484654 本文为星球嘉宾"海艳"的PowerBI数据分析工作实践系列分享之三,她深入浅出的介绍了PowerBI ...
- 数据可视化之PowerQuery篇(十)如何将Excel的PowerQuery查询导入到Power BI中?
https://zhuanlan.zhihu.com/p/78537828 最近碰到星友的一个问题,他是在Excel的PowerQuery中已经把数据处理好了,但是处理后的数据又想用PowerBI来分 ...
- 数据可视化之PowerQuery篇(十六)使用Power BI进行流失客户分析
https://zhuanlan.zhihu.com/p/73358029 为了提升销量,在不断吸引新客户的同时,还要防止老客户离你而去,但每一个顾客不可能永远是你的客户,不可避免的都会经历新客户.活 ...
- 数据可视化之PowerQuery篇(十二)客户购买频次分布
https://zhuanlan.zhihu.com/p/100070260 商业数据分析通常都可以简化为对数据进行筛选.分组.汇总的过程,本文通过一个实例来看看PowerBI是如何快速完成整个过程的 ...
- 数据可视化之PowerQuery篇(二十)如何计算在职员工数量?
https://zhuanlan.zhihu.com/p/128652582 经常碰到的一类问题是,如何根据起止日期来计算某个时间点的数量,比如: 已知合同的生效日期和到期日期,特定日期的有效合同有 ...
随机推荐
- QTabWidget 中 关于Tab 关闭和添加的基本教程!
QTabWidget是PyQt5 中使用较为广泛的容器之一,经常会在日常使用的软件中用到它:QTabwidget是由几个标签组成,每个标签可以当作一个界面,下面就是应用Qtabwidget的一个简单例 ...
- windbg分析一次大查询导致的内存暴涨
项目上反馈了一个问题,就是在生产环境上,用户正常使用的过程中,出现了服务器内存突然暴涨,客户有点慌,想找下原因. 讲道理,内存如果是缓慢上涨一直不释放的话,应该是存在内存泄漏的,这种排查起来比较困难, ...
- 浅谈HTTPS和HTTP
1.HTTP和HTTPS的基本概念 HTTP:超文本传输协议,是互联网上应用最为广泛的一种网络协议,是一个客户端和服务端请求和应答的标准,用于WWW服务器传输超文本到本地浏览器的传输协议,它可以使浏览 ...
- Java学习笔记5(API)
Java API API(Application Programming Interface)指的是应用程序编程接口. String类 String初始化有两种,一个是使用字符串常量初始化一个Stri ...
- Linux系统结构详解(转)
Linux系统一般有4个主要部分: 内核.shell.文件系统和应用程序.内核.shell和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序.管理文件并使用系统.部分层次结构如图1-1所 ...
- new jup在新一代中存在
1.灰度发布服务动态路由 动态配置路由规则,实现对调用流量的精确控制.可配置基于版本.IP.自定义标签等复杂的规则.2.服务鉴权示例2需求:服务 provider-demo 只允许来自 consume ...
- skywalking学习ppt
和传统应用监控的区别,Dapper论文 监控图
- leetcode 力扣 两数之和
class Solution: def addTwoNumbers(self, l1, l2): n1 = [] n2 = [] nl = [] while l1.next and l2.next: ...
- Code Walkthroughs DataStream API
上级:https://www.cnblogs.com/hackerxiaoyon/p/12747387.html DataStream API DataStreamApi 提供了健壮,有状态的流应用, ...
- mybatis缓存之一级缓存(二)
这篇文章介绍下mybatis的一级缓存的生命周期 一级缓存的产生 一级缓存的产生,并不是看mappper的xml文件的select方法,看下面的例子 mapper.xml <select id= ...