模版题为【poj 1287】Networking。

题意我就不说了,我就想简单讲一下Kruskal和Prim算法。卡Kruskal的题似乎几乎为0。(●-`o´-)ノ

假设有一个N个点的连通图,有M条边(不定向),求MST(Minimal Spanning Tree)最小生成树的值。

1.Kruskal 克鲁斯卡算法

概述:将边从小到大排序,依次将边两端的不在同一个联通分量/联盟的点分别加入一个个联盟内,将边也纳入,计入答案。最终N个点合并为一个联盟,也就是纳入联盟内的边达到N-1条就结束算法。
实现:并查集。
时间复杂度:O(m log m+m*k)≈O(m log m)
应用:稀疏图(Sparse Graph, 由于主要看边数)
注意——无须建2条双向边,因为每次纳入点,但时间复杂度又是按边算的。
代码如下——

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<algorithm>
5 #include<iostream>
6 using namespace std;
7 const int N=110,M=5010,D=10010;
8
9 //这是无向边的图,不用建2倍的便关于方向的边。
10 struct node
11 {
12 int x,y,d;
13 node() {}//
14 node(int x,int y,int d):x(x),y(y),d(d) {}//
15 //bool operator < (const node& now) const
16 //{ return d<now.d; }
17 }a[M];
18 int fa[N];
19 int n,m;
20
21 bool cmp(node x,node y) {return x.d<y.d;}
22 int mmin(int x,int y) {return x<y?x:y;}
23 int ffind(int x)
24 {//保持树的形态不变,顺便把遍历过的结点都改成树根的子节点,而不是之前子节点的子节点(这样要find要调用很多层)
25 if (fa[x]!=x) fa[x]=ffind(fa[x]);
26 return fa[x];
27 }
28 int Kruskal()
29 {
30 int i,k;
31 int x,y,xx,yy;
32 int cnt=0,ans=0;
33 sort(a+1,a+1+m,cmp);
34 for (i=1;i<=n;i++) fa[i]=i;
35 for (i=1;i<=m;i++)//从最小的边开始选
36 {
37 x=a[i].x,xx=ffind(x);
38 y=a[i].y,yy=ffind(y);
39 if (xx!=yy)
40 {
41 cnt++,ans+=a[i].d;
42 fa[xx]=yy;
43 if (cnt==n-1) break;//边选够了
44 }
45 }
46 return ans;
47 }
48 int main()
49 {
50 while (scanf("%d",&n)!=EOF && n)
51 {
52 scanf("%d",&m);
53 int i,x,y,d;
54 for (i=1;i<=m;i++)
55 {
56 scanf("%d%d%d",&x,&y,&d);
57 a[i]=node(x,y,d);//
58 }
59 printf("%d\n",Kruskal());
60 }
61 return 0;
62 }

Kruskal

2.Prim 普里姆算法

概述:先将1个点纳入联盟内,于是每次新纳入离联盟最近的点(看联盟内的点连到联盟外的点的边权),更新距离。

实现:邻接矩阵 或 邻接表+优先队列

时间复杂度:O(n2) & O(m log n)

【别人说邻接表的是O(m log n),还是O(m+n)(??),可我用的是邻接表但并不那么觉得......既然这个算法几乎用不到,我就不深究了。然后我之后发现求SP最短路的Dijkstra 迪杰斯特拉算法除了“更新距离”那里不一样,其他代码都是一模一样的!⊙o⊙ 所以优化后的内容可以参考我的另外一篇的博文了。就是这个:关于最短路径问题(图论)

应用:稠密图(Dense Graph, 由于主要看点数)

注意——由于用到了邻接表的last[]和a[].next,所以要建双向边。

代码如下——(无优化的)

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 #include<algorithm>
6 using namespace std;
7
8 const int N=55,M=3010,D=110;
9 int n,m,len;
10 struct edge
11 {
12 int x,y,d,next;
13 edge() {}
14 edge(int x,int y,int d):x(x),y(y),d(d) {}
15 }a[M];
16 int dis[N],vis[N],last[N];
17
18 int mmin(int x,int y) {return x<y?x:y;}
19 void ins(int x,int y,int d)
20 {
21 a[++len]=edge(x,y,d);
22 a[len].next=last[x],last[x]=len;
23 }
24 int Prim()
25 {
26 int i,j,k,ans=0;
27 memset(vis,0,sizeof(vis));
28 memset(dis,63,sizeof(dis));//点到联盟的距离
29 dis[1]=0;//candidate
30 for (i=1;i<=n;i++)//每次选一个到联盟距离最小的vertices顶点
31 {
32 int p=0;
33 for (j=1;j<=n;j++)
34 if (!vis[j] && dis[j]<dis[p]) p=j;
35 ans+=dis[p];
36 dis[p]=0,vis[p]=1;
37 for (k=last[p];k;k=a[k].next)//调整
38 {
39 int y=a[k].y;
40 dis[y]=mmin(dis[y],a[k].d);
41 }
42 }
43 return ans;
44 }
45 int main()
46 {
47 int i,x,y,d;
48 while (scanf("%d",&n)!=EOF && n)
49 {
50 scanf("%d",&m);
51 memset(last,0,sizeof(last));
52 len=0;
53 for (i=1;i<=m;i++)
54 {
55 scanf("%d%d%d",&x,&y,&d);
56 ins(x,y,d),ins(y,x,d);
57 }
58 m*=2;
59 printf("%d\n",Prim());
60 }
61 return 0;
62 }

Prim 邻接表

还有一个模版题:【uva 1395】Slim Span(图论--最小生成树+结构体快速赋值 模版题)

关于最小生成树 Kruskal 和 Prim 的简述(图论)的更多相关文章

  1. 最小生成树——Kruskal与Prim算法

    最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...

  2. 最小生成树 kruskal算法&prim算法

    (先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...

  3. 最小生成树算法(Prim,Kruskal)

    边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...

  4. 稀疏图(邻接链表),并查集,最短路径(Dijkstra,spfa),最小生成树(kruskal,prim)

    全部函数通过杭电 1142,1162,1198,1213等题目测试. #include<iostream> #include<vector> #include<queue ...

  5. 稠密图(邻接矩阵),并查集,最短路径(Dijkstra,spfa),最小生成树(kruskal,prim)

    全部函数通过杭电 1142,1162,1198,1213等题目测试. #include<iostream> #include<vector> #include<queue ...

  6. 最小生成树(Kruskal和Prim算法)

    关于图的几个概念定义:          关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vi与vj都有路 ...

  7. 1.1.2最小生成树(Kruskal和Prim算法)

    部分内容摘自 勿在浮沙筑高台 http://blog.csdn.net/luoshixian099/article/details/51908175 关于图的几个概念定义: 连通图:在无向图中,若任意 ...

  8. 最小生成树——kruskal算法

    kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...

  9. 数据结构之最小生成树Kruskal算法

    1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...

随机推荐

  1. maven 无法导入ojdbc 的jar包 解决方法

    由于maven无法在线安装ojdbc包,所有先在我们需要手动导入. 准备环境: 1.系统需要配置好jdk以及maven环境. 2.ojdbc的jar包,记住jar的路径,我的路径是:E:\jdbc\o ...

  2. 关于maven多module的依赖问题

    之前的项目因为历史的原因,都是一个project里只包含了一个module,今年进入了新的项目组,出现了多个module,最近刚好也是在学<maven实战>因此想要将这个东西记录下来 工程 ...

  3. 【Java】集合框架(List Set Map)

    文章目录 集合框架 List(列表) ArrayList 案例 Set HashSet 案例 iterator(迭代器) Map HashMap 案例 集合总结 参考资料 重新搞一波 复习巩固 简单记 ...

  4. 【Java】单例模式(Singleton)

    重新搞一波 复习巩固 简单记录 慕课网 Java工程师 文章目录 单例概述 设计模式 单例模式(Singleton) 参考资料 单例概述 Singleton Pattern 单例模式是Java中最简单 ...

  5. CTF实验吧-WEB题目解题笔记(1)简单的登陆题

    1.简单的登陆题 解题链接: http://ctf5.shiyanbar.com/web/jiandan/index.php  Burp抓包解密 乱码,更换思路.尝试id intruder 似乎也没什 ...

  6. 工作记录:记一次线上ZK掉线问题排查

    目录 问题的发现 zk的情况以及分析 总结 问题的发现 最早问题的发现在于用户提的,用户提出他支付时支付失败,过了一会儿再试就好了,于是翻日志,查询到当时duboo调用出现了下类错误: [TraceI ...

  7. 【9k字+】第二篇:进阶:掌握 Redis 的一些进阶操作(Linux环境)

    九 Redis 常用配置文件详解 能够合理的查看,以及理解修改配置文件,能帮助我们更好的使用 Redis,下面按照 Redis 配置文件的顺序依次往下讲 1k 和 1kb,1m 和 1mb .1g 和 ...

  8. 如果using语句中出现异常,资源会被释放掉吗?

    <CLR Via C#>第三版 P489 在using内部抛出了异常,被using的对象还是会被释放掉. Using编译时会自动生成Try Finally代码块. 同样Using只能用于实 ...

  9. LVS负载均衡IP隧道模式原理介绍以及配置实战

    LVS 基本工作原理 当用户向负载均衡调度器(Director Server)发起请求,调度器将请求发往至内核空间 PREROUTING 链首先会接收到用户请求,判断目标 IP 确定是本机 IP,将数 ...

  10. Bitter.Core系列三:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore ORM 之 示例模型创建

    在具体数据库操作之前,我们先准备好四张表以及相对应数据库操作模型: 学生表,年级表,班级表,学分表.示例数据库表,如下代码(MSSQL 为例) --学生表 CREATE TABLE t_student ...