数据去重(data deduplication)是大数据领域司空见惯的问题了。除了统计UV等传统用法之外,去重的意义更在于消除不可靠数据源产生的脏数据——即重复上报数据或重复投递数据的影响,使计算产生的结果更加准确。

介绍下经常使用的去重方案:

一、布隆过滤器(BloomFilter)

基本原理:

BloomFilter是由一个长度为m比特的位数组(bit array)k个哈希函数(hash function)组成的数据结构。位数组均初始化为0,所有哈希函数都可以分别把输入数据尽量均匀地散列。当要插入一个元素时,将其数据分别输入k个哈希函数,产生k个哈希值。以哈希值作为位数组中的下标,将所有k个对应的比特置为1。当要查询(即判断是否存在)一个元素时,同样将其数据输入哈希函数,然后检查对应的k个比特。如果有任意一个比特为0,表明该元素一定不在集合中。如果所有比特均为1,表明该集合有(较大的)可能性在集合中。为什么不是一定在集合中呢?因为一个比特被置为1有可能会受到其他元素的影响,这就是所谓“假阳性”(false positive)。相对地,“假阴性”(false negative)在BloomFilter中是绝不会出现的。

实现参考:

1、Guava中的布隆过滤器:com.google.common.hash.BloomFilter类

2、开源java实现:https://github.com/Baqend/Orestes-Bloomfilter

Redis Bloom Filter扩展:

基于redis做存储后端的BloomFilter实现,可以将bit位存储在redis中,防止计算任务在重启后,当前状态丢失的问题。

二、HyperLogLog(HLL)

HyperLogLog是去重计数的利器,能够以很小的精确度误差作为trade-off大幅减少内存空间占用,在不要求100%准确的计数场景下常用。

在用Flink做实时计算的过程中,可以用HLL去重计数,比如统计UV。

实现参考:

https://github.com/aggregateknowledge/java-hll

结合Flink,下面的聚合函数即可实现从WindowedStream按天、分key统计PV和UV。

WindowedStream<AnalyticsAccessLogRecord, Tuple, TimeWindow> windowedStream = watermarkedStream
.keyBy("siteId")
.window(TumblingEventTimeWindows.of(Time.days(1)))
.trigger(ContinuousEventTimeTrigger.of(Time.seconds(10))); windowedStream.aggregate(new AggregateFunction<AnalyticsAccessLogRecord, Tuple2<Long, HLL>, Tuple2<Long, Long>>() {
private static final long serialVersionUID = 1L; @Override
public Tuple2<Long, HLL> createAccumulator() {
return new Tuple2<>(0L, new HLL(14, 6));
} @Override
public Tuple2<Long, HLL> add(AnalyticsAccessLogRecord record, Tuple2<Long, HLL> acc) {
acc.f0++;
acc.f1.addRaw(record.getUserId());
return acc;
} @Override
public Tuple2<Long, Long> getResult(Tuple2<Long, HLL> acc) {
return new Tuple2<>(acc.f0, acc.f1.cardinality());
} @Override
public Tuple2<Long, HLL> merge(Tuple2<Long, HLL> acc1, Tuple2<Long, HLL> acc2) {
acc1.f0 += acc2.f0;
acc1.f1.union(acc2.f1);
return acc1;
}
});

三、Roaring Bitmap

布隆过滤器和HyperLogLog,虽然它们节省空间并且效率高,但也付出了一定的代价,即:

  • 只能插入元素,不能删除元素;
  • 不保证100%准确,总是存在误差。

这两个缺点可以说是所有概率性数据结构(probabilistic data structure)做出的trade-off,毕竟鱼与熊掌不可兼得。

如果一定追求100%准确,普通的位图法显然不合适,应该采用压缩位图(Roaring Bitmap)。

基本原理:

将32位无符号整数按照高16位分桶,即最多可能有216=65536个桶,称为container。存储数据时,按照数据的高16位找到container(找不到就会新建一个),再将低16位放入container中。也就是说,一个RBM就是很多container的集合。

实现参考:

https://github.com/RoaringBitmap/RoaringBitmap

使用限制:

  • 对去重的字段只能用int或者long类型;
  • 对于无法有效压榨的字段(如随机生成的),占用内存较大

四、外部存储去重

利用外部K-V数据库(Redis、HBase之类)存储需要去重的键。由于外部存储对内存和磁盘占用同样敏感,所以也得设定相应的TTL,以及对大的键进行压缩。另外,外部K-V存储毕竟是独立于应用之外的,一旦计算任务出现问题重启,外部存储的状态和内部状态的一致性(是否需要同步)也是要注意的。

外部存储去重,比如Elasticsearch的 _id 就可以做“去重”功能,但是这种去重的只能针对少量低概率的数据,对全量数据去重是不合适的,因为对ES会产生非常大的压力。

参考:

高效压缩位图RoaringBitmap的原理与应用

谈谈三种海量数据实时去重方案

Flink基于RoaringBitmap的精确去重方案

大数据去重(data deduplication)方案的更多相关文章

  1. PGIS大数据量点位显示方案

    PGIS大数据量点位显示方案 问题描述 PGIS在地图上显示点位信息时,随点位数量的增加浏览器响应速度会逐渐变慢,当同时显示上千个点时浏览器会变得非常缓慢,以下是进行的测试: 测试环境: 服务器: C ...

  2. 大数据 Big Data howto

    The Fourth Paradigm: Data-Intensive Scientific Discovery http://research.microsoft.com/en-us/collabo ...

  3. SQL Server 大数据量分页建议方案

    简单的说就是这个 select top(20) * from( select *, rowid = row_number() over(order by xxx) from tb with(noloc ...

  4. 大数据排序算法:外部排序,bitmap算法;大数据去重算法:hash算法,bitmap算法

    外部排序算法相关:主要用到归并排序,堆排序,桶排序,重点是先分成不同的块,然后从每个块中找到最小值写入磁盘,分析过程可以看看http://blog.csdn.net/jeason29/article/ ...

  5. BitMap算法 .net实现 用于去重并且排序,适用于大型权限管理 ,大数据去重排序

    BitMap利用byte特性 针对排序+去重  最佳实践: 100万条数据的排序+去重用时200毫秒左右 static void Main(string[] args) { ]; /*alias*/ ...

  6. 关于大数据平台ETL可行性方案

    今年做过两个公司需求都遇到了实时流入hive的需求,storm入hive有几种可行性方案. 1.storm直接写入hive,storm下面有个stormhive的工具包,可以进行数据写入hive.但是 ...

  7. 重磅来袭,使用CRL实现大数据分库分表方案

    关于分库分表方案详细介绍 http://blog.csdn.net/bluishglc/article/details/7696085 这里就不作详细描述了 分库分表方案基本脱离不了这个结构,受制于实 ...

  8. c# 大数据量比较时-方案

    1.当面临千万条数据量的比较时,从技术的角度来说应该用泛型键值(c#键值由于用了散列算法速度很快).例如前几天我需要查的是 航空公司.出发.到达.返点可以将 航空公司-出发-到达做一个键,返点作为值. ...

  9. 大数据list去重

    MaxList模块主要是对Java集合大数据去重的相关介绍. 背景: 最近在项目中遇到了List集合中的数据要去重,大概一个2500万的数据,开始存储在List中,需要跟一个2万的List去去重. 直 ...

随机推荐

  1. Assuming that agent dropped connection because of access permission

    Assuming that agent dropped connection because of access permission

  2. 使用msys2在window下构建和使用Linux的软件

    目录 前言 安装 使用 总结 前言 在window下构建Linux编译环境是很常见的,以前用过mingw弄过差不多的环境. 但是使用msys2后就根本停不下来咯,太好用咯. 安装 去官网下载吧,安装跟 ...

  3. Java 安全之Weblogic 2018-2628&2018-2893分析

    Java 安全之Weblogic 2018-2628&2018-2893分析 0x00 前言 续上一个weblogic T3协议的反序列化漏洞接着分析该补丁的绕过方式,根据weblogic的补 ...

  4. 【Oracle LISTNER】oracle Listener 宕机解决办法

    今天想起了很久没用的oracle库,用plsql尝试连接,发现报超时错误,以为是偶然,多次尝试连接,发现还是超时,于是登录到系统中,查看数据库情况,发现正常查询和修改添加,感觉不是数据库问题,查看监听 ...

  5. Linux下Too many open files问题排查与解决

    作者: Grey 原文地址: Github 语雀 博客园 Too many open files是Linux系统中常见的错误,从字面意思上看就是说程序打开的文件数过多,不过这里的files不单是文件的 ...

  6. oracle可传输表空间测试

    使用RMAN在恢复表空间的时候,表空间数据文件DBID和恢复数据库的数据文件DBID必须相同 可传输表空间不需要这样,也就是可以快速的把这个表空间插入另一个数据库使用 可传输表空间内的对象必须不依赖与 ...

  7. MongoDB查询优化--explain,慢日志

    引入 与Mysql数据库一样,MongoDB也有自己的查询优化工具,explain和慢日志 explain shell命令格式 db.collection.explain().<method(. ...

  8. oracle ORA-00060死锁查询、表空间扩容

    --查看被锁住的表 select b.owner,b.object_name,a.session_id,a.locked_mode from v$locked_object a,dba_objects ...

  9. JAVA不可不知的强软弱虚四种引用

    一个变量指向new对象,就是引用,在java中有四种引用,分别是强软弱虚,常见的Object o = new Object(),就是强引用,垃圾回收的时候,强引用不会被回收.   公用类: publi ...

  10. Bitter.Core系列八:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore 之 事务

    Bitter.Core 编写事务相当简单,Bitter.Core 尽可能的将代码编写量降为最低,例外一方方面保证客户主观能控制代码.Bitter.Core 事务提交,支持Builkcopy事务,原生事 ...