You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i].

Example 1:

Input: nums = [5,2,6,1]
Output: [2,1,1,0]
Explanation:
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.

Constraints:

  • 0 <= nums.length <= 10^5
  • -10^4 <= nums[i] <= 10^4
 
class Solution {
public:
vector<int> countSmaller(vector<int>& nums) {
vector<int> res(nums.size(),0);
//从右向左,将数组有序插入tmp.利用二分查找确定当前数右边比它小的数的个数
vector<int> tmp;
for(int i=nums.size()-1;i>=0;i--){
int left = 0,right=tmp.size()-1;
//找第一个大于等于当前数的位置。插入其中
while(left <= right){
int mid = left+(right-left)/2;
if(tmp[mid] < nums[i]) left = mid+1;
else right = mid-1;
}
//最后返回的位置是left
res[i]=left;
//插入nums[i]
tmp.insert(tmp.begin()+left,nums[i]);
}
return res;
}
};

//归并:先引入逆序数;不同于逆序数对:

res[nums[i].second] += (j-mid-1);
这个里面坑比较多
class Solution {
public:
//法二:利用归并排序求逆序对数的方法
//https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof/submissions/ vector<int> countSmaller(vector<int>& nums) {
int n=nums.size();
vector<int> res(n,0);
if(n==0 || n==1) return res;
vector<pair<int,int>> tmp(n,pair<int,int>{0,0});
vector<pair<int,int>> idx;
for(int i=0;i<n;i++){
idx.push_back(make_pair(nums[i],i));
}
mergesort(idx,tmp,0,n-1,res);
return res;
} //merge的过程将left到right有序重新存入nums.归并nums[left,mid],nums[mid+1,right]
void merge(vector<pair<int,int>>& nums,vector<pair<int,int>>& tmp,int left,int mid,int right,vector<int>& res) {
int i=left,j=mid+1,k=left;
for(;i<=mid&&j<=right;){
if(nums[i].first<=nums[j].first){
//不同于算整个数组逆序数
//这里的i不是之前的i。归并后数字的位置被改变了.所以利用pari记录nums[i]原始位置
//res[i] += (j-mid-1);
res[nums[i].second] += (j-mid-1);
tmp[k++] = nums[i++];
}else{
tmp[k++] = nums[j++];
}
}
//还有未归并完成的
while(i<=mid){
//先计算res
res[nums[i].second] += (j-mid-1);
tmp[k++]=nums[i++];
}
while(j<=right){
tmp[k++]=nums[j++];
}
//将tmp重新放入nums,那么nums[left,right]即有序了
for(int i=left;i<=right;i++){
nums[i] = tmp[i];
}
return;
}
//归并排序
void mergesort(vector<pair<int,int>>& nums,vector<pair<int,int>>& tmp,int left,int right,vector<int>& res) {
if(left < right){
int mid = left+(right-left)/2;
mergesort(nums,tmp,left,mid,res);
mergesort(nums,tmp,mid+1,right,res);
//合并nums[left,mid] nums[mid+1,right]
merge(nums,tmp,left,mid,right,res);
}
return;
} };

315. Count of Smaller Numbers After Self(二分或者算法导论中的归并求逆序数对)的更多相关文章

  1. [LeetCode] 315. Count of Smaller Numbers After Self (Hard)

    315. Count of Smaller Numbers After Self class Solution { public: vector<int> countSmaller(vec ...

  2. leetcode 315. Count of Smaller Numbers After Self 两种思路(欢迎探讨更优解法)

    说来惭愧,已经四个月没有切 leetcode 上的题目了. 虽然工作中很少(几乎)没有用到什么高级算法,数据结构,但是我一直坚信 "任何语言都会过时,只有数据结构和算法才能永恒". ...

  3. leetcode 315. Count of Smaller Numbers After Self 两种思路

    说来惭愧,已经四个月没有切 leetcode 上的题目了. 虽然工作中很少(几乎)没有用到什么高级算法,数据结构,但是我一直坚信 "任何语言都会过时,只有数据结构和算法才能永恒". ...

  4. 315. Count of Smaller Numbers After Self

    You are given an integer array nums and you have to return a new counts array. The counts array has ...

  5. [LeetCode] 315. Count of Smaller Numbers After Self 计算后面较小数字的个数

    You are given an integer array nums and you have to return a new counts array. The countsarray has t ...

  6. LeetCode 315. Count of Smaller Numbers After Self

    原题链接在这里:https://leetcode.com/problems/count-of-smaller-numbers-after-self/ 题目: You are given an inte ...

  7. 315.Count of Smaller Numbers After Self My Submissions Question

    You are given an integer array nums and you have to return a new counts array. Thecounts array has t ...

  8. 315. Count of Smaller Numbers After Self(Fenwick Tree)

    You are given an integer array nums and you have to return a new counts array. The counts array has ...

  9. 第十四周 Leetcode 315. Count of Smaller Numbers After Self(HARD) 主席树

    Leetcode315 题意很简单,给定一个序列,求每一个数的右边有多少小于它的数. O(n^2)的算法是显而易见的. 用普通的线段树可以优化到O(nlogn) 我们可以直接套用主席树的模板. 主席树 ...

随机推荐

  1. 多测师讲解pythonl _字符,列表,元组,字典,集合,归纳_高级讲师肖sir

  2. 极简 Node.js 入门 - 5.2 url & querystring

    极简 Node.js 入门系列教程:https://www.yuque.com/sunluyong/node 本文更佳阅读体验:https://www.yuque.com/sunluyong/node ...

  3. 适合刚刚学习编程的萌新:C语言编程学习制作超简单又好玩的报数游戏!

    C语言是面向过程的,而C++是面向对象的 C和C++的区别: C是一个结构化语言,它的重点在于算法和数据结构.C程序的设计首要考虑的是如何通过一个过程,对输入(或环境条件)进行运算处理得到输出(或实现 ...

  4. 生物信息-McScan(Python-jcvi)共线性画图

    比较基因组学中,共线性的分析的图无疑是最漂亮的. 共线性分析可以很好地解释进化关系和多倍化事件. 本文主要介绍的是唐老师的Python版McScan(jcvi工具包),这个包很强大,但是其功能在官网的 ...

  5. c++ 通用单例类声明

    //单例类定义#define CLASS_INSTANCE_DEF(className) \public: \ static className* GetInstance() \ { \ static ...

  6. rpm|yum安装的查看安装路径

    [root@localhost src]# rpm -qa|grep grafanagrafana-7.1.0-1.x86_64[root@localhost src]# rpm -ql grafan ...

  7. swoole执行外部程序称为进程

    <?php $child = new \Swoole\Process(function(\Swoole\Process $process){ $process->exec('/usr/lo ...

  8. 聊聊简单又灵活的权限设计(RBAC)

    你:我看完能知道个啥?我:也就以下两点吧一. 了解基于 RBAC 思路的表设计二. 表数据在实际开发场景中是如何使用的你:我觉得那应该还有点干货吧我:我不要你觉得,我要我觉得 (͡ ͡° ͜ つ ͡͡ ...

  9. BCE和CE交叉熵损失函数的区别

    首先需要说明的是PyTorch里面的BCELoss和CrossEntropyLoss都是交叉熵,数学本质上是没有区别的,区别在于应用中的细节. BCE适用于0/1二分类,计算公式就是 " - ...

  10. Spring+Hibernate+Struts2整合之实现登录功能

    前端代码: <form id="loginForm" action="${ pageContext.request.contextPath }/user_login ...