CF1320 Div1 D.Reachable Strings 题解
题目大意
给定一个长为\(n\)的01串\(S\),每次你可以对一个串的三个连续位置做:\(011 \rightarrow 110\),\(110 \rightarrow 011\)的操作。
有\(q\)次询问,每次询问给出两个长度相等的子串,问是否能从一个串变到另一个串。
题解
首先,我们发现操作不改变\(1\)的个数。所以可以先用前缀和判断\(1\)的个数是否相等。
如果某个字符串不出现相邻的两个\(1\),那么容易得到你无法做任何有效的操作,就直接判断是否相等。这一步可以用hash或sa或sam实现。
否则我们又发现一个新的不变量,就是奇数位(是子串的奇数位)的\(1\)的个数和偶数位的\(1\)的个数都不改变!所以我们用前缀和算出两个串判断奇数位的\(1\),再判断是否相等
即可
提交
获得WA5的好成绩!
这给我们一个启示,就是简单的使用不变量无法得到正确的充要条件。
我们需要一个绝妙的想法。
把\(0\)看成小人,\(1\)看成空地。每次操作可以理解成把一个小人移动两个单位长度,且不改变小人之间的相对位置。
因此,从左到右每个小人所处位置的奇偶性是不变的。
设询问的字符串为\([l_1, r_1], [l_2, r_2]\),则先判断这两个子串的\(0\)的个数是否相等。如果相等,记它们为\(k\)。设从左往右第一个串的第\(i\)个\(0\)的在S的位置是\(a_i\),第二个串是\(b_i\)。
充要条件就是:对任意\(i\),\(a_i - l_1 \equiv b_i - l_2 (\mod 2)\)!
(至于条件的充分性,真的很好证的,就不写了)
我们把S中每个\(0\)连起来,然后如果这个\(0\)的下标为奇数,就在这个位置填上\(1\),否则填上\(0\),记这个新串是\(T_1\),把这个新串的\(01\)互换,形成\(T_2\)。
对\(T = T_1T_2\)建后缀数组或后缀自动机。问题变成了每次询问\(T\)的两个子串是否相等。
这是一个经典的问题。
#include <bits/stdc++.h>
#define debug(x) cerr << #x << " " << (x) << endl
using namespace std;
const int N = 200005, K = 25;
int n, q, len[N << 2], par[N << 2], last = 0, cnt = 0;
char str[N];
map<char, int> ch[N << 2];
void extend (char c) {
int p = last, np = ++cnt;
len[np] = len[p] + 1;
for (; ~p && !ch[p][c]; p = par[p]) ch[p][c] = np;
if (p < 0) par[np] = 0;
else {
int q = ch[p][c];
if (len[q] == len[p] + 1) par[np] = q;
else {
int nq = ++cnt;
ch[nq] = ch[q], len[nq] = len[p] + 1;
par[nq] = par[q], par[q] = par[np] = nq;
for (; ~p && ch[p][c] == q; p = par[p]) ch[p][c] = nq;
}
}
last = np;
}
int tot = 0, id[N << 1], fa[N << 2][K], Log2[N << 2];
int zero[N << 1], pos[N];
int find_pos (int l, int r) {
int u = id[r];
for (int i = Log2[cnt]; i >= 0; i--) {
if (~fa[u][i] && len[fa[u][i]] > r - l) u = fa[u][i];
}
return u;
}
int main () {
scanf("%d%s", &n, &str);
par[0] = -1, len[0] = 0;
for (int i = 0; i < n; i++) {
if (str[i] == '0') {
pos[tot] = i;
zero[tot++] = i & 1;
}
}
for (int i = 0, j = 0; i < n; i++) {
if (str[i] == '0') {
zero[tot + j] = i & 1 ^ 1;
j++;
}
}
for (int i = 0; i < (tot << 1); i++) extend(zero[i] + '0'), id[i] = last;
Log2[1] = 0;
for (int i = 2; i <= cnt; i++) Log2[i] = Log2[i >> 1] + 1;
for (int i = 0; i <= cnt; i++) fa[i][0] = par[i];
for (int i = 1; i <= Log2[cnt]; i++) {
for (int j = 0; j <= cnt; j++) {
if (fa[j][i - 1] < 0) fa[j][i] = -1;
else fa[j][i] = fa[fa[j][i - 1]][i - 1];
}
}
scanf("%d", &q);
for (int i = 0; i < q; i++) {
int l1, l2, len;
scanf("%d%d%d", &l1, &l2, &len), l1--, l2--;
int L1 = lower_bound(pos, pos + tot, l1) - pos, R1 = lower_bound(pos, pos + tot, l1 + len) - pos;
int L2 = lower_bound(pos, pos + tot, l2) - pos, R2 = lower_bound(pos, pos + tot, l2 + len) - pos;
bool flag = true;
if (R1 - L1 != R2 - L2) flag = false;
if (l1 & 1) L1 += tot, R1 += tot;
if (l2 & 1) L2 += tot, R2 += tot;
if (L1 < R1 && L2 < R2 && find_pos(L1, R1 - 1) != find_pos(L2, R2 - 1)) flag = false;
if (flag) puts("Yes");
else puts("No");
}
return 0;
}
CF1320 Div1 D.Reachable Strings 题解的更多相关文章
- 题解-Reachable Strings
题解-Reachable Strings 前置知识: \(\texttt{Hash}\) Reachable Strings 给一个长度为 \(n\) 的 \(\texttt{01}\) 串 \(s\ ...
- CF1144A Diverse Strings 题解
Content 我们定义一个字符串是合法的,当且仅当这个字符串是"连续排列"(按照字母表顺序排序).现在给出 \(n\) 个字符串 \(s_1,s_2,s_3,...,s_n\), ...
- POJ2406:Power Strings——题解
http://poj.org/problem?id=2406 就是给一个串,求其循环节的个数. 稍微想一下就知道,KMP中nxt数组记录了所有可与前面匹配的位置. 那么如果我们的循环节长度为k,有n个 ...
- 洛谷 UVA10298 Power Strings 题解
Analysis 结论:设字符串长度为n,最长相同前后缀的长度为kmp[i],如n%(n-kmp[n])=0,则答案为n/(n-kmp[n]),否则为1. 如果循环节多于一个,以前n-kmp[n]个为 ...
- POJ2406 Power Strings 题解 KMP算法
题目链接:http://poj.org/problem?id=2406 题目大意:给你一个字符串 \(t\) ,\(t\) 可以表示为另一个小字符串循环了 \(K\) 了,求最大的循环次数 \(K\) ...
- CF544A Set of Strings 题解
Content 有一个长为 \(n\) 的字符串 \(q\),试问能否将其划分为 \(k\) 个子串,使得每个子串的首字母都不相等,可以的话输出 \(\texttt{YES}\) 并输出任意一个方案, ...
- CF447B DZY Loves Strings 题解
Content 有一个长度为 \(n\) 的仅含小写字母的字符串 \(s\) 以及 26 个英文小写字母的价值 \(W_\texttt{a},W_\texttt{b},...,W_\texttt{z} ...
- CF1547B Alphabetical Strings 题解
Content 我们有一个空的字符串,第 \(i\) 次操作我们可以将字母表中第 \(i\) 个字母加入字符串的最前面或最后面.我们称一个长度为 \(n\) 的字符串是合法的,当且仅当这个字符串可以通 ...
- CF1506C Double-ended Strings 题解
Content 有两个字符串 \(a,b\).我们每次操作可以将两个字符串中的一个字符串的最前面一个字符或这最后面一个字符删去(可以将某个字符串通过若干次操作变为空串).求需要多少次操作才能够使 \( ...
随机推荐
- ceph-fuse卡顿无法写入的问题
问题 ceph fuse closing stale session while still operable (Oliver Dzombic) 问题原文: Hi, i am testing on c ...
- ceph集群的安装和配置教程
本篇主题: 1.怎样配置ssh免登陆访问 2.为什么搭建集群要关闭防火墙和selinux,如何关闭 3.从哪里获取ceph的安装包,怎样安装才是快速正确的 4.为什么要配置时间同步服务,怎样配置 5. ...
- 手把手教你5分钟从零开发一款简易的IDEA插件!项目经验/毕设不愁了!
我这个人没事就喜欢推荐一些好用的 IDEA 插件给大家.这些插件极大程度上提高了我们的生产效率以及编码舒适度. 不知道大家有没有想过自己开发一款 IDEA 插件呢? 我自己想过,但是没去尝试过.刚好有 ...
- HttpClient4.5X使用-集成微服务
HttpClient4.5X使用-集成微服务 1.什么是HttpClient HTTP 协议可能是现在 Internet 上使用得最多.最重要的协议了,越来越多的 Java 应用程序需要直 ...
- Python_DOM
Dom简介:Js通过标签筛选让html多文件联动 1.找到标签 获取单个元素 docum ent.getElemrntByID('i1') 获取多个元素(列表)document.getElemrnts ...
- ISITDTU CTF 2020 部分Web题目Writeup
周末,跟着m3w师傅打ISITDTUCTF,m3w师傅带弟弟上分,Tql! Web1 给了源码: <?php class Read{ public $flag; public function ...
- 维吉尼亚密码-攻防世界(shanghai)
维吉尼亚密码 维吉尼亚密码是使用一系列 凯撒密码 组成密码字母表的加密算法,属于多表密码的一种简单形式. 加密原理 维吉尼亚密码的前身,是我们熟悉的凯撒密码. 凯撒密码的加密方式是依靠一张字母表中的每 ...
- 来吧,展示!Redis的分布式锁及其实现Redisson的全过程
前言 分布式锁是控制分布式系统之间同步访问共享资源的一种方式. 在分布式系统中,常常需要协调他们的动作.如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要 ...
- 面试阿里,美团,京东都会被问到的Spring ,从基础到源码帮你全搞定
1 前言 Spring是一个轻量级开源框架,它是为了解决企业应用开发的复杂性而创建的.框架的主要优势之一就是其分层架构,分层架构允许使用者选择使用哪一个组件,同时为 J2EE 应用程序开发提供集成的框 ...
- Vegas视频的音频叠加效果怎么实现,可以用其他软件吗
有时我们会用Vegas为某段影片配音,我们要怎么把配音和背景声融合在一起呢?想必马上会有人反应过来:让配音和背景声分别置于两条轨道上就好了.这当然是一个相当好的方式. 可是,如果我想要把两段音频合成一 ...