celery 异步任务小记
这里有一篇写的不错的:http://www.jianshu.com/p/1840035cb510
自己的“格式化”后的内容备忘下:
我们总在说c10k的问题, 也做了不少优化, 然后优化总是不够的。
其中的一个瓶颈就是一些耗时的操作(网络请求/文件操作--含耗时的数据库操作)。
如果我们不关心他们的返回值,则可以将其做成异步任务,保证执行成功即可。
开始阐述之前约定一些概念:
1. web请求处理进程(简称:消息生产者,记做P), 这是我们c10k问题注意的焦点
2. 消息的处理者(简称:消费者,记做C), 在成功“男人”后面默默无闻工作的“女人”
3. 消息存放的地方(简称: 消息队列, 记做Q)
4. 消息/任务, 记做T
基本处理过程:
1. P将T保存到Q
2. C从Q中取出一个T实例, 处理, 若处理失败则将T示例退回到Q(务必保证T得到成功处理)。
最简单的实现方案:
redis 消息队列(利用redis list类型)的lpush/rpop(brpop)来处理。python代码如下:
TaskServer.py
- # -*- coding:utf-8 -*-
- import traceback
- import simplejson
- import redis
- import uuid
- from functools import wraps
- class TaskExecutor(object):
- def __init__(self, task_name , *args, **kwargs):
- self.queue = redis.StrictRedis()#host='localhost', port=6378, db=0, password='xxx_tasks')
- self.task_name = task_name
- def _publish_task(self, task_id , func, *args, **kwargs):
- self.queue.lpush(self.task_name,
- simplejson.dumps({'id':task_id, 'func':func, 'args':args, 'kwargs':kwargs})
- )
- def task(self, func):#decorator
- setattr(func,'delay',lambda *args, **kwargs:self._publish_task(uuid.uuid4().hex, func.__name__, *args, **kwargs))
- @wraps(func)
- def _w(*args, **kwargs):
- return func(*args, **kwargs)
- return _w
- def run(self):
- print 'waiting for tasks...'
- while True:
- if self.queue.llen(self.task_name):
- msg_data = simplejson.loads( self.queue.rpop(self.task_name))#这里可以用StrictRedis实例的brpop改善,去掉llen轮询。
- print 'handling task(id:{0})...'.format(msg_data['id'])
- try:
- if msg_data.get('func',None):
- func = eval(msg_data.get('func'))
- if callable(func):
- #print msg_data['args'], msg_data['kwargs']
- ret = func(*msg_data['args'], **msg_data['kwargs'])
- msg_data.update({'result':ret})
- self.queue.lpush(self.task_name+'.response.success', simplejson.dumps(msg_data) )
- except:
- msg_data.update({'failed_times':msg_data.get('failed_times',0)+1, 'failed_reason':traceback.format_exc()})
- if msg_data.get('failed_times',0)<10:#最多失败10次,避免死循环
- self.queue.rpush(self.task_name,simplejson.dumps(msg_data))
- else:
- self.queue.lpush(self.task_name+'.response.failure', simplejson.dumps(msg_data) )
- print traceback.format_exc()
- PingTask = TaskExecutor('PingTask')
- @PingTask.task
- def ping_url(url):
- import os
- os.system('ping -c 2 '+url)
- if __name__=='__main__':
- PingTask.run()
运行服务:python TaskServer.py
ps:
1. TaskExecutor类是一个轻量级的celery.Celery实现。提供了 task修饰器。对被修饰的函数添加delay 方法(将原任务方法名/参数保存到redis的list中--FIFO--实际上celery也是类似的处理)
2. 客户端只要定义自己的TaskExecutor实例以及用此实例的task修饰对应的任务处理函数func。并在代码中待用 func.delay(...)实现异步调用(为了保证成功,最多调用10次); 成功的记录会保存在 redis的 "任务名.response.success" 队列中, 超过10次仍然失败的保存在 “任务名.response.failure"队列中。
3. 待改进的地方是很多的, 比如多线程, 负载均衡。(尚未阅读celery源码)
TaskClient.py
- # -*- coding:utf-8 -*-
- import sys
- sys.path.append('./')
- from my_tasks import ping_url
- ping_url.delay('www.baidu.com')
ps: 客户端和服务器文件在统一linux目录下。
celery
试验证明, celery目测大体上跟上面的“基本处理过程”基本一致。即:
P将T保存在Q中。
C从Q中取出T处理(保证成功--会不会死循环?执行一个注定失败的任务--就没有验证了)。
celery的运用比较简单:
1.安装celery
2.编写需要异步执行的任务函数,并用celery实例的task修饰器修饰
3.调用异步任务时, 用函数名.delay(参数)形式调用为异步调用。 函数名(参数)方式为同步调用。
4.执行celery监听服务
demo 这里有:http://www.jianshu.com/p/1840035cb510。 再来一个极简的:
tasks.py
- # -*- coding:utf-8 -*-
- from celery import Celery
- brokers = 'redis://127.0.0.1:6379/5'
- backend = 'redis://127.0.0.1:6379/6'
- import time
- app = Celery('tasks', backend=backend, broker=brokers)
- @app.task
- def add(x,y):
- time.sleep(10)
- return x+y
运行celery监听服务:celery -A tasks worker -l error
顺便附上测试代码:tasks_test.py(跟tasks.py同一路径,linux环境)
- # -*- coding:utf-8 -*-
- import sys
- sys.path.append('./')
- def test():
- from tasks import add
- for i in range(1000):
- add.delay(i,i+1)
- if __name__=='__main__':
- test()
执行之 : python tasks_test.py
(可以1秒内跑完, 证明的确异步处理了)
顺便查看了下进程,发现celery自动开了一个主进程, 与cpu核数相同的子线程。看了下官方文档,有web监控用的插件(flower)。
安装: sudo pip install flower
运行之(跟tasks.py先同目录): celery -A tasks flower --port=5555
效果图如下(木有发现失败任务--"Failed tasks"---很遗憾):
flower的基本原理推测是直接查询Q, 并基于结果输出图表等。
ref: https://abhishek-tiwari.com/post/amqp-rabbitmq-and-celery-a-visual-guide-for-dummies
转载请注明来源:http://www.cnblogs.com/Tommy-Yu/p/5955294.html
谢谢!
celery 异步任务小记的更多相关文章
- Django使用Celery异步任务队列
1 Celery简介 Celery是异步任务队列,可以独立于主进程运行,在主进程退出后,也不影响队列中的任务执行. 任务执行异常退出,重新启动后,会继续执行队列中的其他任务,同时可以缓存停止期间接收 ...
- Celery 异步任务 , 定时任务 , 周期任务 的芹菜
1.什么是Celery?Celery 是芹菜Celery 是基于Python实现的模块, 用于执行异步定时周期任务的其结构的组成是由 1.用户任务 app 2.管道 broker 用于存储 ...
- Django商城项目笔记No.6用户部分-注册接口-短信验证码实现celery异步
Django商城项目笔记No.4用户部分-注册接口-短信验证码实现celery异步 接上一篇,如何解决前后端请求跨域问题? 首先想一下,为什么图片验证码请求的也是后端的api.meiduo.site: ...
- Django --- celery异步任务与RabbitMQ模块
一 RabbitMQ 和 celery 1 celery Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务, ...
- python—Celery异步分布式
python—Celery异步分布式 Celery 是一个python开发的异步分布式任务调度模块,是一个消息传输的中间件,可以理解为一个邮箱,每当应用程序调用celery的异步任务时,会向brok ...
- Celery异步任务重复执行(Redis as broker)
之前讲到利用celery异步处理一些耗时或者耗资源的任务,但是近来分析数据的时候发现一个奇怪的现象,即是某些数据重复了,自然想到是异步任务重复执行了. 查阅之后发现,到如果一个任务太耗时,任务完成时间 ...
- Django之使用celery异步完成发送验证码
使用celery的目的:将项目中耗时的操作放入一个新的进程实现 1.安装celery pip install celery 2.在项目的文件夹下创建包celery_tasks用于保存celery异步任 ...
- celery异步任务、定时任务
阅读目录 一 什么是Celery? 二 Celery的使用场景 三 Celery的安装配置 四 Celery异步任务 五Celery定时任务 六在Django中使用Celery 一 什么是Cele ...
- celery异步发送邮件
利用Django框架发送邮件的详细过程,在前两天的博客中有所记录,但是单纯的那样发邮件是有非常大的问题的,这就需要celery异步发送来解决 首先我们来看一下邮件发送的过程: Django网站先发送到 ...
随机推荐
- 面试中关于Java你所需知道的的一切
本篇文章会对面试中常遇到的Java技术点进行全面深入的总结,帮助我们在面试中更加得心应手,不参加面试的同学也能够借此机会梳理一下自己的知识体系,进行查漏补缺. 1. Java中的原始数据类型都有哪些, ...
- OrcharNoCMS中的发布订阅使用
对于Orchard里面的EventBus,没有太多的文章去介绍说明.它最好的应用是发布订阅的应用. 使用介绍: 在Car模块中,我们定义一个接口,继承IEventHandler接口. 当我们在创建一条 ...
- JavaScript模板引擎artTemplate.js——两种方法实现性别的判定
template.helper(name, callback) name:必传,辅助事件的名称. callback:必传,辅助事件的回调函数. return:undefined 所谓的辅助事件,主要用 ...
- 【C#】C#容易忽视的错误
1.string 拼接站内存,前提是字符串比较多的时候string 字符串类型拼接占内存,解决方法就是用 StringBuilder和String.Format2.不知道内置的验证数据类型的方法. ; ...
- Java 理论与实践: 处理 InterruptedException
捕捉到它,然后怎么处理它? 很多 Java™ 语言方法,例如 Thread.sleep() 和 Object.wait(),都可以抛出InterruptedException.您不能忽略这个异常,因为 ...
- ASP.NET MVC中viewData、viewBag和templateData的使用与区别
一:类型比较 1.1)ViewBag是动态类型(dynamic). 1.2)ViewData是一个字典型的(Dictionary)-->ViewDataDictionary. 1.3)TempD ...
- MyEclipse导入jquery-1.8.0.min.js等文件报错的解决方案
1.选中报错的jquery文件例如"jquery-1.8.0.min.js". 2.右键选择 MyEclipse-->Exclude From Validation . 3. ...
- tensrflow python [defunct]
在ubuntu上面安装了GPU版本的tensorflow后,很容易碰到zombie thread 的问题,无法正常关闭tensorflow的线程,用ps aux|grep python可以看到 pyt ...
- Yii应用的目录结构和入口脚本
以下是一个通过高级模版安装后典型的Yii应用的目录结构: . ├── backend ├── common ├── console ├── environments ├── frontend ├── ...
- java List 和Map的使用
一.MAP package net.xsoftlab.baike; import java.util.HashMap;import java.util.Iterator;import java.uti ...