bzoj 4373: 算术天才⑨与等差数列 hash
题目大意: 给你n个数, 给两种操作, 一种给你l, r, k,问你[l, r]区间里的数排序后能否构成一个公差为k的等差数列。 另一种是将位置x的数变为y。 强制在线。
可以用hash来做, 用线段树保存一个区间里的最小值, 和, 以及平方的和。 然后每次询问, 假设这个区间构成等差数列,那么首项为这个区间的最小值, 然后按公式算出以minn为首项, k为公差的数列的和, 为a1*len+len*(len-1)/2*d, 然后算出平方的和, 相当于sigma(i : 0 to len-1) (a1+i*d)^2, 然后把它拆开, 就变成a1*a1*len+a1*d*len*(len-1)+d*d*len*(len-1)*(2*len-1)/6, 记得时刻取模防止爆longlong, /6那里用乘法逆元算。 然后看是否相等就可以了。
正解当然不是这样的..
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const ll mod = 1e9+;
const ll inf = 1e18;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
const int maxn = 3e5+;
ll sum1[maxn<<], sum2[maxn<<], minn[maxn<<], ans1, ans2, ans3;
void pushUp(int rt) {
sum1[rt] = sum1[rt<<]+sum1[rt<<|];
sum2[rt] = (sum2[rt<<] + sum2[rt<<|])%mod;
minn[rt] = min(minn[rt<<], minn[rt<<|]);
}
void build(int l, int r, int rt) {
if(l == r) {
scanf("%I64d", &sum1[rt]);
minn[rt] = sum1[rt];
sum2[rt] = sum1[rt]*sum1[rt]%mod;
return ;
}
int m = l+r>>;
build(lson);
build(rson);
pushUp(rt);
}
void update(int p, ll val, int l, int r, int rt) {
if(l == r) {
sum1[rt] = minn[rt] = val;
sum2[rt] = val*val%mod;
return ;
}
int m = l+r>>;
if(p<=m)
update(p, val, lson);
else
update(p, val, rson);
pushUp(rt);
}
void query(int L, int R, int l, int r, int rt) {
if(L<=l&&R>=r) {
ans1 += sum1[rt];
ans2 = (ans2+sum2[rt])%mod;
ans3 = min(ans3, minn[rt]);
return ;
}
int m = l+r>>;
if(L<=m)
query(L, R, lson);
if(R>m)
query(L, R, rson);
}
ll pow(ll a, ll b) {
ll ret = ;
while(b) {
if(b&) {
ret = ret*a%mod;
}
a = a*a%mod;
b>>=;
}
return ret;
}
ll get1(ll a1, ll l, ll d) {
ll ret = a1*l+l*(l-)/*d;
return ret;
}
ll get2(ll a1, ll l, ll d) {
ll ret = a1*a1%mod*l%mod;
ll rev = pow(6LL, mod-)%mod;
ret = (ret + d*d%mod*l%mod*(l-)%mod*(*l-)%mod*rev%mod)%mod;
ret = (ret + a1*d%mod*l%mod*(l-)%mod)%mod;
return ret%mod;
}
int main()
{
int n, m, cnt = , sign, x, y, z;
cin>>n>>m;
build(, n, );
while(m--) {
scanf("%d%d%d", &sign, &x, &y);
x ^= cnt, y ^= cnt;
if(sign == ) {
update(x, 1LL*y, , n, );
} else {
scanf("%d", &z);
z ^= cnt;
ans3 = inf, ans1 = ans2 = ;
query(x, y, , n, );
ll tmp1 = get1(ans3, y-x+, z);
ll tmp2 = get2(ans3, y-x+, z);
if(tmp1 == ans1 && tmp2 == ans2) {
cnt++;
puts("Yes");
} else {
puts("No");
}
}
}
return ;
}
bzoj 4373: 算术天才⑨与等差数列 hash的更多相关文章
- bzoj 4373 算术天才⑨与等差数列
4373: 算术天才⑨与等差数列 Time Limit: 10 Sec Memory Limit: 128 MBhttp://www.lydsy.com/JudgeOnline/problem.ph ...
- BZOJ 4373: 算术天才⑨与等差数列 线段树
Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能 ...
- bzoj 4373 算术天才⑨与等差数列——线段树+set
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 能形成公差为k的等差数列的条件:mx-mn=k*(r-l) && 差分 ...
- BZOJ 4373 算术天才⑨与等差数列 线段树+set(恶心死我了)
mdzz,这道题重构了4遍,花了一个晚上... 满足等差数列的条件: 1. 假设min是区间最小值,max是区间最大值,那么 max-min+k(r−l) 2. 区间相邻两个数之差的绝对值的gcd=k ...
- BZOJ 4373算术天才⑨与等差数列(线段树)
题意:给你一个长度为n的序列,有m个操作,写一个程序支持以下两个操作: 1. 修改一个值 2. 给出三个数l,r,k, 询问:如果把区间[l,r]的数从小到大排序,能否形成公差为k的等差数列. n,m ...
- BZOJ4373 算术天才⑨与等差数列 【线段树】*
BZOJ4373 算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k ...
- 【BZOJ4373】算术天才⑨与等差数列 [线段树]
算术天才⑨与等差数列 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 算术天才⑨非常喜欢和等 ...
- 【BZOJ4373】算术天才⑨与等差数列 线段树+set
[BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...
- JSOI2009 等差数列 和 算术天才⑨与等差数列 和 CH4302 Interval GCD
等差数列 为了检验学生的掌握情况,jyy布置了一道习题:给定一个长度为N(1≤N≤100,000)的数列,初始时第i个数为vi(vi是整数,−100,000≤vi≤100,000),学生们要按照jyy ...
随机推荐
- Crisis of HDU(母函数)
Crisis of HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- struts2 全局格式化,格式化时间,金钱,数字
//在前台页面去控制时间,数字,小数,金钱,是极其不明智的选择,除非你是写了良好的 js api 像freemarker , struts 都有良好的标签,我们应该好好利用,才发现的,给大家分享一下 ...
- mysql的查询缓存
查询是数据库技术中最常用的操作.查询操作的过程比较简单,首先从客户端发出查询的SQL语句,数据库服务端在接收到由客户端发来的 SQL语句后, 执行这条SQL语句,然后将查询到的结果返回给客户端 ...
- Objective-C内存管理教程和原理剖析(三)
初学Objective-C的朋友都有一个困惑,总觉得对Objective-C的内存管理机制琢磨不透,程 序经常内存泄漏或莫名其妙的崩溃.我在这里总结了自己对Objective-C内存管理机制的研究成果 ...
- sql server dateadd()
定义和用法 DATEADD() 函数在日期中添加或减去指定的时间间隔. 语法 DATEADD(datepart,number,date) date 参数是合法的日期表达式.number 是您希望添加的 ...
- MATLAB中return和break
return: RETURN Return to invoking function. RETURN causes a return to the invoking function or to th ...
- .Net页面缓存OutPutCachexian详解
一 它在Web.Config中的位置 <system.web> <!--页面缓存--> <caching> <outputCacheSettings> ...
- 尼康D5100使用设置及技巧,同样也适用尼康D5200
尼康D5100使用设置及技巧,同样也适用尼康D5200,希望对新手能有点帮助. 一.设置 1.优化校准:可以在menu菜单中找到它,一般使用"标准"就可以,建议将"标准& ...
- 经验分享:CSS浮动(float,clear)通俗讲解 太棒了,清晰明了
很早以前就接触过CSS,但对于浮动始终非常迷惑,可能是自身理解能力差,也可能是没能遇到一篇通俗的教程. 前些天小菜终于搞懂了浮动的基本原理,迫不及待的分享给大家. 写在前面的话: 由于CSS内容比较多 ...
- android之ArrayAdapter的重写
昨天介绍了ArrayAdapter的使用,今天介绍一下更加实用的一点,对它进行重写,满足自己的个性化设计需要. ArrayAdapter(数组适配器)一般用于显示一行文本信息,所以比较容易. publ ...