Bayesian Formulation on Cooperative Tracking
Suppose a joint state representing a set of \(N_{n}\) nodes moving in a field
\[
\textbf{X}=
\begin{bmatrix}
\left(\textbf{x}^{1}\right)^{T} & \left(\textbf{x}^{2}\right)^{T} & \cdots & \left(\textbf{x}^{N_{n}}\right)^{T} \\
\end{bmatrix}
^{T}
%_{n\times 1}
\]
To track the joint state cooperatively, a filter propagates states from time \(k-1\) to \(k\) and updates estimates with all observations at time \(k\).
\begin{equation} \label{eq:cooperativeFormulation}
P\left(\textbf{X}_{k}|\textbf{Z}_{1:k}\right) \propto P\left(\textbf{Z}_{k}|\textbf{X}_{k}\right) \int P\left(\textbf{X}_{k}|\textbf{X}_{k-1}\right) P\left(\textbf{X}_{k-1}|\textbf{Z}_{1:k-1}\right)d\textbf{X}_{k-1}
\end{equation}
We make the following assumptions:
- every node moves independently in the field, from which we have: \(P\left(\textbf{X}_{k}|\textbf{X}_{k-1}\right)=\prod_{p=1}^{N_{n}}P\left(\textbf{x}_{k}^{p}|\textbf{x}_{k-1}^{p}\right)\).
- an egocentric position observation \(\textbf{z}_{k}^{p}\) regarding node \(p\) is only dependent on current state of the node \(\textbf{x}_{k}^{p}\).
- a relative range observation \(\textbf{z}_{k}^{p\rightarrow q}\ \left(p\neq q\right)\) is only conditional on the current state of two involved nodes, i.e. \(\textbf{x}_{k}^{p}\) and \(\textbf{x}_{k}^{q}\).
Therefore the observation component of Equation \eqref{eq:cooperativeFormulation} is able to be further factorised to absolute and relative observations.
\[
P\left(\textbf{Z}_{k}|\textbf{X}_{k}\right)=\left(\prod_{p=1}^{N_{n}}P\left(\textbf{z}_{k}^{p}|\textbf{x}_{k}^{p}\right)\right)\left(\prod_{p=1}^{N_{n}}\prod_{q=1}^{N_{n}}P\left(\textbf{z}_{k}^{p\rightarrow q}|\textbf{x}_{k}^{p},\textbf{x}_{k}^{q}\right)\right)
\]
where \(p\neq q\).
A marginal distribution \(P\left(\textbf{x}_{k}^{p}|\textbf{Z}_{1:k}\right)\) for node \(p\) at time \(k\) could be obtained by integrating with respect to the joint state of the rest nodes (denoted by \(\overline{\textbf{X}}_{k}\)) in the joint posterior in Equation \eqref{eq:cooperativeFormulation}. This is achieved by:
\begin{equation} \label{eq:marginalisation}
P\left(\textbf{x}_{k}^{p}|\textbf{Z}_{1:k}\right)=\int P\left(\textbf{X}_{k}|\textbf{Z}_{1:k}\right)d \overline{\textbf{X}}_{k}
\end{equation}
where
\(
\textbf{X}_{k}=
\begin{bmatrix}
\left(\textbf{x}_{k}^{p}\right)^{T} & \overline{\textbf{X}}^{T}_{k} \\
\end{bmatrix}
^{T}
\)
本站内容若无说明,则为原创
转载请注明,欢迎讨论和指正
bot.Seamus
Bayesian Formulation on Cooperative Tracking的更多相关文章
- 【综述】(MIT博士)林达华老师-"概率模型与计算机视觉”
[综述](MIT博士)林达华老师-"概率模型与计算机视觉” 距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread ...
- 概率图模型(PGM)综述-by MIT 林达华博士
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概 ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking
Martin Danelljan 判决类追踪模型是由训练样本学习得到,但是为了适应目标和背景的变化sample set在每一帧中都会更新. 令(xjk, yjk)表示第k帧k={1,2,...,t}中 ...
- Bayesian Face Revisited A Joint Formulation
很有意思的一篇人脸识别算法文章,人家写的太好,就不好意思写了,收集了一些资料,包括了原理介绍,流程图,项目网址和作者主页信息等. 参考资料: [1]. http://blog.csdn.net/csy ...
- (转)CVPR 2016 Visual Tracking Paper Review
CVPR 2016 Visual Tracking Paper Review 本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...
- 基于粒子滤波的物体跟踪 Particle Filter Object Tracking
Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...
- [Bayesian] “我是bayesian我怕谁”系列 - Exact Inferences
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有 ...
- KCF:High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析(一)。分享与转发请注明出处-作者:行于此路
High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析 基于核相关滤波器的高速目标跟踪方法,简称KCF 写在前面,之所以对这篇文章 ...
随机推荐
- C# json Helper
using System; using System.Collections.Generic; using System.Data; using System.Text; namespace Comm ...
- SignalR在Xamarin Android中的使用
原文:SignalR在Xamarin Android中的使用 ASP.NET SignalR 是为 ASP.NET 开发人员提供的一个库,可以简化开发人员将实时 Web 功能添加到应用程序的过程.实时 ...
- ServerProperties
Spring Boot 其默认是集成web容器的,启动方式由像普通Java程序一样,main函数入口启动.其内置Tomcat容器或Jetty容器,具体由配置来决定(默认Tomcat).当然你也可以将项 ...
- 给ie浏览器添加推荐浏览器提示
<script type="text/javascript"> var isIE = !!window.ActiveXObject; var isIE6 = isIE ...
- EasyUI的下拉选择框控件方法被屏蔽处理方式
1.html标签如下 <div id="selectMap" style="top: 1px;left: 80px;position: absolute;" ...
- 【CF 676B Pyramid of Glasses】模拟,递归
题目链接:http://codeforces.com/problemset/problem/676/B 题意:一个n层的平面酒杯金字塔,如图,每个杯子的容量相同.现在往最顶部的一个杯子倒 t 杯酒,求 ...
- java Socket使用注意
Socket s = new Socket(ia, port); BufferedOutputStream bufOut = new BufferedOutputStream(s.getOutputS ...
- zoj 3471 Most Powerful(状态压缩dp)
Recently, researchers on Mars have discovered N powerful atoms. All of them are different. These ato ...
- eclipse中误删了servers文件
Eclipse中误删了servers文件,需要重新添加tomcat服务器,这时就会遇到在New Server对话框中选择了Tomcat 6/7后却无法单击"Next"按钮的问题,如 ...
- RMAN数据库恢复之丢失数据文件的恢复
删除某一数据文件:SQL> HOST del D:\app\Administrator\oradata\orcl\USERS01.dbf 启动数据库,提示丢失数据文件4,此时数据库处理MOUNT ...