Suppose a joint state representing a set of \(N_{n}\) nodes moving in a field
\[
    \textbf{X}=
    \begin{bmatrix}
        \left(\textbf{x}^{1}\right)^{T} & \left(\textbf{x}^{2}\right)^{T} & \cdots & \left(\textbf{x}^{N_{n}}\right)^{T} \\
    \end{bmatrix}
    ^{T}
    %_{n\times 1}
\]

To track the joint state cooperatively, a filter propagates states from time \(k-1\) to \(k\) and updates estimates with all observations at time \(k\).
\begin{equation} \label{eq:cooperativeFormulation}
    P\left(\textbf{X}_{k}|\textbf{Z}_{1:k}\right) \propto P\left(\textbf{Z}_{k}|\textbf{X}_{k}\right) \int P\left(\textbf{X}_{k}|\textbf{X}_{k-1}\right) P\left(\textbf{X}_{k-1}|\textbf{Z}_{1:k-1}\right)d\textbf{X}_{k-1}
\end{equation}

We make the following assumptions:

  1. every node moves independently in the field, from which we have: \(P\left(\textbf{X}_{k}|\textbf{X}_{k-1}\right)=\prod_{p=1}^{N_{n}}P\left(\textbf{x}_{k}^{p}|\textbf{x}_{k-1}^{p}\right)\).
  2. an egocentric position observation \(\textbf{z}_{k}^{p}\) regarding node \(p\) is only dependent on current state of the node \(\textbf{x}_{k}^{p}\).
  3. a relative range observation \(\textbf{z}_{k}^{p\rightarrow q}\ \left(p\neq q\right)\) is only conditional on the current state of two involved nodes, i.e. \(\textbf{x}_{k}^{p}\) and \(\textbf{x}_{k}^{q}\).

Therefore the observation component of Equation \eqref{eq:cooperativeFormulation} is able to be further factorised to absolute and relative observations.
\[
    P\left(\textbf{Z}_{k}|\textbf{X}_{k}\right)=\left(\prod_{p=1}^{N_{n}}P\left(\textbf{z}_{k}^{p}|\textbf{x}_{k}^{p}\right)\right)\left(\prod_{p=1}^{N_{n}}\prod_{q=1}^{N_{n}}P\left(\textbf{z}_{k}^{p\rightarrow q}|\textbf{x}_{k}^{p},\textbf{x}_{k}^{q}\right)\right)
\]

where \(p\neq q\).

A marginal distribution \(P\left(\textbf{x}_{k}^{p}|\textbf{Z}_{1:k}\right)\) for node \(p\) at time \(k\) could be obtained by integrating with respect to the joint state of the rest nodes (denoted by \(\overline{\textbf{X}}_{k}\)) in the joint posterior in Equation \eqref{eq:cooperativeFormulation}. This is achieved by:

\begin{equation} \label{eq:marginalisation}
    P\left(\textbf{x}_{k}^{p}|\textbf{Z}_{1:k}\right)=\int P\left(\textbf{X}_{k}|\textbf{Z}_{1:k}\right)d \overline{\textbf{X}}_{k}
\end{equation}

where
\(
    \textbf{X}_{k}=
    \begin{bmatrix}
        \left(\textbf{x}_{k}^{p}\right)^{T} & \overline{\textbf{X}}^{T}_{k} \\
    \end{bmatrix}
    ^{T}
\)

本站内容若无说明,则为原创

转载请注明,欢迎讨论和指正

bot.Seamus

Bayesian Formulation on Cooperative Tracking的更多相关文章

  1. 【综述】(MIT博士)林达华老师-"概率模型与计算机视觉”

    [综述](MIT博士)林达华老师-"概率模型与计算机视觉” 距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread ...

  2. 概率图模型(PGM)综述-by MIT 林达华博士

    声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概 ...

  3. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  4. Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking

    Martin Danelljan 判决类追踪模型是由训练样本学习得到,但是为了适应目标和背景的变化sample set在每一帧中都会更新. 令(xjk, yjk)表示第k帧k={1,2,...,t}中 ...

  5. Bayesian Face Revisited A Joint Formulation

    很有意思的一篇人脸识别算法文章,人家写的太好,就不好意思写了,收集了一些资料,包括了原理介绍,流程图,项目网址和作者主页信息等. 参考资料: [1]. http://blog.csdn.net/csy ...

  6. (转)CVPR 2016 Visual Tracking Paper Review

    CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...

  7. 基于粒子滤波的物体跟踪 Particle Filter Object Tracking

    Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...

  8. [Bayesian] “我是bayesian我怕谁”系列 - Exact Inferences

    要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有 ...

  9. KCF:High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析(一)。分享与转发请注明出处-作者:行于此路

    High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析 基于核相关滤波器的高速目标跟踪方法,简称KCF 写在前面,之所以对这篇文章 ...

随机推荐

  1. javascript之DOM操作

    一.document.getElementById()    根据Id获取元素节点 <div id="div1"> <p id="p1"> ...

  2. 算法(Algorithm)是什么?

    我们用煎蛋来打个比方.煎蛋的一般步骤是: 1.>取煎锅. 2.>取油. ->我们有油吗? ****有,把油倒入煎锅. ****没有,我们要去买油吗? #########要买,出去买油 ...

  3. printf "%.*s" 分类: 小细节 2015-07-04 14:36 2人阅读 评论(0) 收藏

    ref : http://www.cnblogs.com/yuaqua/archive/2011/10/21/2219856.html 小数点.后"*"表示输出位数,具体的数据来自 ...

  4. 【HDU 5510 Bazinga】字符串

    2015沈阳区域赛现场赛第2题 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5510 题意:给定一个由字符串组成的序列,一共n个元素,每个元素是一个不 ...

  5. 【转】android 电池(二):android关机充电流程、充电画面显示

    关键词:android 电池关机充电 androidboot.mode charger关机充电 充电画面显示 平台信息:内核:linux2.6/linux3.0系统:android/android4. ...

  6. django 启动和请求

    Django运行方式 调试模式 直接 python manage.py runserver python manage.py runserver python manage.py runserver ...

  7. 关于iOS多线程,你看我就够了

    在这篇文章中,我将为你整理一下 iOS 开发中几种多线程方案,以及其使用方法和注意事项.当然也会给出几种多线程的案例,在实际使用中感受它们的区别.还有一点需要说明的是,这篇文章将会使 用 Swift  ...

  8. idea maven jetty插件热部署

    maven tomcat插件好像无法进行热部署,jetty可以如下配置实现热部署,但是idea无法进行自动编译,所以需要如下快捷键 Ctrl+Shift+F9,编译 Ctrl+F9,生成项目 < ...

  9. .NET中的CSV导入导出(实例)

    导入代码,从csv文件得到datatable         /// <summary>        /// Get Data From Csv File         /// (Th ...

  10. winform —— 连接数据库SQL Server 2008

    using System.Data.SqlClient;命名空间sqlconnection:数据连接类sqlcommand:数据库操作类sqldatareader:读取 using System; u ...