Suppose a joint state representing a set of \(N_{n}\) nodes moving in a field
\[
    \textbf{X}=
    \begin{bmatrix}
        \left(\textbf{x}^{1}\right)^{T} & \left(\textbf{x}^{2}\right)^{T} & \cdots & \left(\textbf{x}^{N_{n}}\right)^{T} \\
    \end{bmatrix}
    ^{T}
    %_{n\times 1}
\]

To track the joint state cooperatively, a filter propagates states from time \(k-1\) to \(k\) and updates estimates with all observations at time \(k\).
\begin{equation} \label{eq:cooperativeFormulation}
    P\left(\textbf{X}_{k}|\textbf{Z}_{1:k}\right) \propto P\left(\textbf{Z}_{k}|\textbf{X}_{k}\right) \int P\left(\textbf{X}_{k}|\textbf{X}_{k-1}\right) P\left(\textbf{X}_{k-1}|\textbf{Z}_{1:k-1}\right)d\textbf{X}_{k-1}
\end{equation}

We make the following assumptions:

  1. every node moves independently in the field, from which we have: \(P\left(\textbf{X}_{k}|\textbf{X}_{k-1}\right)=\prod_{p=1}^{N_{n}}P\left(\textbf{x}_{k}^{p}|\textbf{x}_{k-1}^{p}\right)\).
  2. an egocentric position observation \(\textbf{z}_{k}^{p}\) regarding node \(p\) is only dependent on current state of the node \(\textbf{x}_{k}^{p}\).
  3. a relative range observation \(\textbf{z}_{k}^{p\rightarrow q}\ \left(p\neq q\right)\) is only conditional on the current state of two involved nodes, i.e. \(\textbf{x}_{k}^{p}\) and \(\textbf{x}_{k}^{q}\).

Therefore the observation component of Equation \eqref{eq:cooperativeFormulation} is able to be further factorised to absolute and relative observations.
\[
    P\left(\textbf{Z}_{k}|\textbf{X}_{k}\right)=\left(\prod_{p=1}^{N_{n}}P\left(\textbf{z}_{k}^{p}|\textbf{x}_{k}^{p}\right)\right)\left(\prod_{p=1}^{N_{n}}\prod_{q=1}^{N_{n}}P\left(\textbf{z}_{k}^{p\rightarrow q}|\textbf{x}_{k}^{p},\textbf{x}_{k}^{q}\right)\right)
\]

where \(p\neq q\).

A marginal distribution \(P\left(\textbf{x}_{k}^{p}|\textbf{Z}_{1:k}\right)\) for node \(p\) at time \(k\) could be obtained by integrating with respect to the joint state of the rest nodes (denoted by \(\overline{\textbf{X}}_{k}\)) in the joint posterior in Equation \eqref{eq:cooperativeFormulation}. This is achieved by:

\begin{equation} \label{eq:marginalisation}
    P\left(\textbf{x}_{k}^{p}|\textbf{Z}_{1:k}\right)=\int P\left(\textbf{X}_{k}|\textbf{Z}_{1:k}\right)d \overline{\textbf{X}}_{k}
\end{equation}

where
\(
    \textbf{X}_{k}=
    \begin{bmatrix}
        \left(\textbf{x}_{k}^{p}\right)^{T} & \overline{\textbf{X}}^{T}_{k} \\
    \end{bmatrix}
    ^{T}
\)

本站内容若无说明,则为原创

转载请注明,欢迎讨论和指正

bot.Seamus

Bayesian Formulation on Cooperative Tracking的更多相关文章

  1. 【综述】(MIT博士)林达华老师-"概率模型与计算机视觉”

    [综述](MIT博士)林达华老师-"概率模型与计算机视觉” 距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread ...

  2. 概率图模型(PGM)综述-by MIT 林达华博士

    声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概 ...

  3. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  4. Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking

    Martin Danelljan 判决类追踪模型是由训练样本学习得到,但是为了适应目标和背景的变化sample set在每一帧中都会更新. 令(xjk, yjk)表示第k帧k={1,2,...,t}中 ...

  5. Bayesian Face Revisited A Joint Formulation

    很有意思的一篇人脸识别算法文章,人家写的太好,就不好意思写了,收集了一些资料,包括了原理介绍,流程图,项目网址和作者主页信息等. 参考资料: [1]. http://blog.csdn.net/csy ...

  6. (转)CVPR 2016 Visual Tracking Paper Review

    CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...

  7. 基于粒子滤波的物体跟踪 Particle Filter Object Tracking

    Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...

  8. [Bayesian] “我是bayesian我怕谁”系列 - Exact Inferences

    要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有 ...

  9. KCF:High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析(一)。分享与转发请注明出处-作者:行于此路

    High-Speed Tracking with Kernelized Correlation Filters 的翻译与分析 基于核相关滤波器的高速目标跟踪方法,简称KCF 写在前面,之所以对这篇文章 ...

随机推荐

  1. 微软的OneDrive研究~

    Dropbox 很好,唯一觉得不爽的是只能同步指定的目录.不过被墙之后就不那么方便了,所以改用微软的 Live Mesh,缺点是支持的设备少(仅 PC 和 Mac). https://technet. ...

  2. MotionEvent的getX(),getY()与getRawX(),getRawY()区别

    getX()是表示Widget相对于自身左上角的x坐标,而getRawX()是表示相对于屏幕左上角的x坐标值(注意:这个屏幕左上角是手机屏幕左上角,不管activity是否有titleBar或是否全屏 ...

  3. C语言简单strcat和strcmp的实现

    对于C标准库中的字符串处理函数应该平常用的比较多:简单实现strcat和strcmp _strcpy: char *_strcpy(char *dest, char *src) { char *buf ...

  4. UESTC_最少花费 2015 UESTC Training for Dynamic Programming<Problem D>

    D - 最少花费 Time Limit: 30000/10000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submi ...

  5. 360极速浏览器 HTML5实验室

    360极速浏览器 HTML5实验室 HTML5 实验室

  6. Linux 时间定时同步操作

    Yum –y install ntp安装时钟同步服务加入开机启动Chkcongfig ntpd on添加自动校对时间,每十分钟校对一次Crontab –e */10 * * * * /usr/sbin ...

  7. hdu 5625 Clarke and chemistry

    Problem Description Clarke is a patient with multiple personality disorder. One day, Clarke turned i ...

  8. Handshakes(思维) 2016(暴力)

    Handshakes Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Submit Sta ...

  9. telnet如何操作Memcached缓存系统?

    4.(1)telnet操作Memcached 许多语言都实现了连接memcached的客户端,其中以Perl.PHP为主.仅仅memcached网站上列出的语言就有:• Perl • PHP • Py ...

  10. centos网速特别慢的最佳解决的方法 - 关闭ipv6

    我使用了centOS,可是发现网速实在是卡得差点儿不能上网,连百度都打不开,可是win却飞快. 后来想到偶然记得有一次看过一段话,说到关闭ipv6,測试来一下,果然有效,关闭来ipv6打开网速飞快. ...