Spark Streaming--实战篇
摘要:
object GenerateChar {
def generateContext(index : Int) : String = {
import scala.collection.mutable.ListBuffer
val charList = ListBuffer[Char]()
for(i <- 65 to 90)
charList += i.toChar
val charArray = charList.toArray
charArray(index).toString
}
def index = {
import java.util.Random
val rdm = new Random
rdm.nextInt(7)
}
def main(args: Array[String]) {
val listener = new ServerSocket(9998)
while(true){
val socket = listener.accept()
new Thread(){
override def run() = {
println("Got client connected from :"+ socket.getInetAddress)
val out = new PrintWriter(socket.getOutputStream,true)
while(true){
Thread.sleep(500)
val context = generateContext(index) //产生的字符是字母表的前七个随机字母
println(context)
out.write(context + '\n')
out.flush()
}
socket.close()
}
}.start()
}
}
}
object ScoketStreaming {
def main(args: Array[String]) {
//创建一个本地的StreamingContext,含2个工作线程
val conf = new SparkConf().setMaster("local[2]").setAppName("ScoketStreaming")
val sc = new StreamingContext(conf,Seconds(10)) //每隔10秒统计一次字符总数
//创建珍一个DStream,连接master:9998
val lines = sc.socketTextStream("master",9998)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x , 1)).reduceByKey(_ + _)
wordCounts.print()
sc.start() //开始计算
sc.awaitTermination() //通过手动终止计算,否则一直运行下去
}
}
Got client connected from :/192.168.31.128
C
G
B
C
F
G
D
G
B
-------------------------------------------
Time: 1459426750000 ms
-------------------------------------------
(B,1)
(G,1)
(C,1)
-------------------------------------------
Time: 1459426760000 ms
-------------------------------------------
(B,5)
(F,3)
(D,4)
(G,3)
(C,3)
(E,1)
When running a Spark Streaming program locally, do not use “local” or “local[1]” as the master URL. Either ofthese means that only one thread
will be used for running tasks locally. If you are using a input DStream based on a receiver (e.g. sockets, Kafka, Flume, etc.), then the single
thread will be used to run the receiver,leaving no thread for processing the received data. 当在本地运行Spark Streaming程序时,Master的URL不能设置为"local"或"local[1]",这两种设置都意味着你将会只有一个线程来运行作业,如果你的Input DStream基于一个接收器
(如Kafka,Flume等),那么只有一个线程来接收数据,而没有多余的线程来处理接收到的数据。
object FileStreaming {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("FileStreaming")
val sc = new StreamingContext(conf,Seconds(5))
val lines = sc.textFileStream("/home/hadoop/wordCount")
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x , 1)).reduceByKey(_ + _)
sc.start()
sc.awaitTermination()
}
}
object QueueStream {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local[2]").setAppName("queueStream")
//每1秒对数据进行处理
val ssc = new StreamingContext(conf,Seconds(1))
//创建一个能够push到QueueInputDStream的RDDs队列
val rddQueue = new mutable.SynchronizedQueue[RDD[Int]]()
//基于一个RDD队列创建一个输入源
val inputStream = ssc.queueStream(rddQueue)
val mappedStream = inputStream.map(x => (x % 10,1))
val reduceStream = mappedStream.reduceByKey(_ + _)
reduceStream.print
ssc.start()
for(i <- 1 to 30){
rddQueue += ssc.sparkContext.makeRDD(1 to 100, 2) //创建RDD,并分配两个核数
Thread.sleep(1000)
}
ssc.stop()
}
}
-------------------------------------------
Time: 1459595433000 ms //第1个输出
-------------------------------------------
(4,10)
(0,10)
(6,10)
(8,10)
(2,10)
(1,10)
(3,10)
(7,10)
(9,10)
(5,10)
............
............
-------------------------------------------
Time: 1459595463000 ms //第30个输出
-------------------------------------------
(4,10)
(0,10)
(6,10)
(8,10)
(2,10)
(1,10)
(3,10)
(7,10)
(9,10)
(5,10)
object StateFull {
def main(args: Array[String]) {
//定义状态更新函数
val updateFunc = (values: Seq[Int], state: Option[Int]) => {
val currentCount = values.foldLeft(0)(_ + _)
val previousCount = state.getOrElse(0)
Some(currentCount + previousCount)
}
val conf = new SparkConf().setMaster("local[2]").setAppName("stateFull")
val sc = new StreamingContext(conf, Seconds(5))
sc.checkpoint(".") //设置检查点,存储位置是当前目录,检查点具有容错机制
val lines = sc.socketTextStream("master", 9999)
val words = lines.flatMap(_.split(" "))
val wordDstream = words.map(x => (x, 1))
val stateDstream = wordDstream.updateStateByKey[Int](updateFunc)
stateDstream.print()
sc.start()
sc.awaitTermination()
}
}
-------------------------------------------
Time: 1459597690000 ms
-------------------------------------------
(B,3)
(F,1)
(D,1)
(G,1)
(C,1)
-------------------------------------------
Time: 1459597700000 ms //会累计之前的值
-------------------------------------------
(B,5)
(F,3)
(D,4)
(G,4)
(A,2)
(E,5)
(C,4)
Spark Straming最大的优点在于处理数据采用的是粗粒度的处理方式(一次处理一小批的数据),这种特性也更方便地实现容错恢复机制,其DStream是在RDD上的高级
抽象,所以其极容易与RDD进行互操作。
Spark Streaming--实战篇的更多相关文章
- spark streaming 实战
最近在学习spark的相关知识, 重点在看spark streaming 和spark mllib相关的内容. 关于spark的配置: http://www.powerxing.com/spark-q ...
- Spark入门实战系列--7.Spark Streaming(下)--实时流计算Spark Streaming实战
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .实例演示 1.1 流数据模拟器 1.1.1 流数据说明 在实例演示中模拟实际情况,需要源源 ...
- Spark Streaming实战
1.Storm 和 SparkStreaming区别 Storm 纯实时的流式处理,来一条数据就立即进行处理 SparkStreaming 微批处理,每次处理 ...
- 倾情大奉送--Spark入门实战系列
这一两年Spark技术很火,自己也凑热闹,反复的试验.研究,有痛苦万分也有欣喜若狂,抽空把这些整理成文章共享给大家.这个系列基本上围绕了Spark生态圈进行介绍,从Spark的简介.编译.部署,再到编 ...
- 《大数据Spark企业级实战 》
基本信息 作者: Spark亚太研究院 王家林 丛书名:决胜大数据时代Spark全系列书籍 出版社:电子工业出版社 ISBN:9787121247446 上架时间:2015-1-6 出版日期:20 ...
- Spark入门实战系列
转自:http://www.cnblogs.com/shishanyuan/p/4699644.html 这一两年Spark技术很火,自己也凑热闹,反复的试验.研究,有痛苦万分也有欣喜若狂,抽空把这些 ...
- 日志=>flume=>kafka=>spark streaming=>hbase
日志=>flume=>kafka=>spark streaming=>hbase 日志部分 #coding=UTF-8 import random import time ur ...
- Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...
- Spark Streaming揭秘 Day13 数据安全容错(Driver篇)
Spark Streaming揭秘 Day13 数据安全容错(Driver篇) 书接上回,首先我们要考虑的是在Driver层面,有哪些东西需要维持状态,只有在需要维持状态的情况下才需要容错,总的来说, ...
- Spark Streaming揭秘 Day12 数据安全容错(Executor篇)
Spark Streaming揭秘 Day12 数据安全容错(Executor篇) 今天,让我们研究下SparkStreaming在Executor端的数据安全及容错机制. 在SparkStreami ...
随机推荐
- servlet下载,解决文件名中有中文下载路径出现乱码不能正常下载问题
方法很多种,我只试用了两种. 主页面JSP中引入下载功能所需的js文件.引入的时候设置编码格式例如 <script type="text/javascript" charse ...
- [Javascript] The JSON.stringify API
JSON (JavaScript Object Notation) is a standard method to serialize JavaScript objects and is common ...
- Verilog 读写文件
Verilog 读写文件 在数字设计验证中,有时我们需要大量的数据,这时可以通过文件输入,有时我们需要保存数据,可以通过写文件保存. 读写文件testbench module file_rw_tb() ...
- Javascript进阶篇——(DOM—节点---获取浏览器窗口可视区域大小+获取网页尺寸)—笔记整理
浏览器窗口可视区域大小获得浏览器窗口的尺寸(浏览器的视口,不包括工具栏和滚动条)的方法:一.对于IE9+.Chrome.Firefox.Opera 以及 Safari: • window.innerH ...
- 自定义VS的ItemTemplates 实现任意文件结构
上一篇说到重写IHttpHandler实现前后端分离,这次说一下如何建立一个如下文件结构. VS建立webform时是根据模板来的.C#的模板目录如下: F:\Program Files (x86)\ ...
- Silverlight visifire Chart图表下载到PPT文件中
一.Silverlight xaml.cs文件 1. //下载图表 private void btnDown_Click(object sender, RoutedEventArgs e ...
- OC基础 点语法的使用
OC基础 点语法的使用 1.创建一个Student类继承于NSObject,Student.h文件 #import <Foundation/Foundation.h> @interface ...
- iOS之断点下载,使用NSURLSession简单封装
最近公司需要做个文件管理的功能模块,刚交到博主手上时,头都大了.因为没做过这方面的东西,只好咬牙加班,并请教某位大神,指点了一下,清楚研究方向,找了网上大量资料,最后实现简单的封装. 上代码:.h文件 ...
- MySql函数应用
-- 当前时间 now(); -- 查询结果串联(逗号) select group_concat(col_name) from table_name;
- HDU 4810 这道题 是属于什么类型?
统计每一位出现1的个数 求组合数 直接贴代码 #include <iostream> #include <cstdio> #include <cmath> #in ...