3942 - Remember the Word

Neal is very curious about combinatorial problems, and now here comes a problem about words. Knowing that Ray has a photographic memory and this may not trouble him, Neal gives it to Jiejie.

Since Jiejie can't remember numbers clearly, he just uses sticks to help himself. Allowing for Jiejie's only 20071027 sticks, he can only record the remainders of the numbers divided by total amount of sticks.

The problem is as follows: a word needs to be divided into small pieces in such a way that each piece is from some given set of words. Given a word and the set of words, Jiejie should calculate the number of ways the given word can be divided, using the words in the set.

Input

The input file contains multiple test cases. For each test case: the first line contains the given word whose length is no more than 300 000.

The second line contains an integer S , 1S4000 .

Each of the following S lines contains one word from the set. Each word will be at most 100 characters long. There will be no two identical words and all letters in the words will be lowercase.

There is a blank line between consecutive test cases.

You should proceed to the end of file.

Output

For each test case, output the number, as described above, from the task description modulo 20071027.

Sample Input

abcd
4
a
b
cd
ab

Sample Output

Case 1: 2

题意:

该题为大白(刘汝佳。入门经典训练指南)上一道例题。p209。

思路:

dp[i]=sum(dp[i+len(x)])

dp[i]表示从字符i开始的字符串即后缀(s[i..L])的分解方案数。

x为是(s[i..L]的前缀。

详细见代码:

#include <iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int md=400110;//单词数乘上单词长度。顶多一个单词一条路径
const int ssz=26;
const int maxn=300010;
const int mod=20071027;
char words[maxn];
int dp[maxn]; struct Trie
{
int ch[md][ssz];
int val[md];
int sz;
void init()
{
sz=1;
val[0]=0;
memset(ch[0],0,sizeof ch[0]);
}
int idx(char c)
{
return c-'a';
}
void inser(char *s)
{
int u=0,n=strlen(s);
for(int i=0; i<n; i++)
{
int c=idx(s[i]);
if(!ch[u][c])
{
memset(ch[sz],0,sizeof ch[sz]);
val[sz]=0;
ch[u][c]=sz++;
}
u=ch[u][c];
}
val[u]=n;//可以传参数初始化
}
void sear(char *s,int p,int len)
{
int u=0;
for(int i=0; i<len; i++)//字符一个一个查找
{
int c=idx(s[i]);
if(!ch[u][c])//前缀搜完
return ;
u=ch[u][c];
if(val[u])
dp[p]=(dp[p]+dp[p+val[u]])%mod;
}
}
} tree;
int main()
{
int i,s,len,cas=1;
char tmp[110]; while(~scanf("%s",words))
{
scanf("%d",&s);
len=strlen(words);
tree.init();//开始忘了初始化。调了半天。。。。。
dp[len]=1;//注意这个位置的初始化!
for(i=0; i<s; i++)
{
scanf("%s",tmp);
tree.inser(tmp);
}
for(i=len-1; i>=0; i--)
{
dp[i]=0;
tree.sear(words+i,i,len-i);
}
printf("Case %d: %d\n",cas++,dp[0]);
}
return 0;
}

LA 3942 Remember the Word(前缀树&树上DP)的更多相关文章

  1. LA 3942 - Remember the Word 字典树+DP

    看题传送门:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show ...

  2. bzoj 2286 [Sdoi2011]消耗战(虚树+树上DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2286 [题意] 给定一棵树,切断一条树边代价为ci,有m个询问,每次问使得1号点与查询 ...

  3. 洛谷P4426 毒瘤 [HNOI/AHOI2018] 虚树+树上dp

    正解:虚树+树上dp 解题报告: 传送门! 首先解释一下题意趴,,,语文70pts选手已经开始看不懂题辣QAQ 大概就是个给一个图,求独立集方案,且保证图是联通的,边的数量最多只比点多10 首先思考如 ...

  4. luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)

    luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...

  5. [LA 3942] Remember the Word

    Link: LA 3942 传送门 Solution: 感觉自己字符串不太行啊,要加练一些蓝书上的水题了…… $Trie$+$dp$ 转移方程:$dp[i]=sum\{ dp[i+len(x)+1]\ ...

  6. UVALive 3942 Remember the Word 字典树+dp

    /** 题目:UVALive 3942 Remember the Word 链接:https://vjudge.net/problem/UVALive-3942 题意:给定一个字符串(长度最多3e5) ...

  7. 【题解】彩色树 51nod 1868 虚树 树上dp

    Prelude 题目在这里:ο(=•ω<=)ρ⌒☆ Solution 蒟蒻__stdcall的第一道虚树题qaq. 首先很容易发现,这个排列是假的. 我们只需要求出每对点之间的颜色数量,然后求个 ...

  8. LA 3942 - Remember the Word (字典树 + dp)

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  9. Trie + DP LA 3942 Remember the Word

    题目传送门 题意:(训练指南P209) 问长字符串S能由短单词组成的方案数有多少个 分析:书上的做法.递推法,从后往前,保存后缀S[i, len-1]的方案数,那么dp[i] = sum (dp[i+ ...

随机推荐

  1. Sicily-1006

    一.  题意 这道题就是考排列组合吧,再来就是比较一下字符的下标算一下两个ranking的距离.然后我总结了一个排列和一个组合的实现方法,这道题直接用的是stl 里面的next_permutation ...

  2. poj 3281 Dining 网络流-最大流-建图的题

    题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...

  3. Phonegap-----Media

    Everything in the code: <!DOCTYPE html> <html> <head> <title>Media Example&l ...

  4. img 的 align 属性

    AbsBottom 图像的下边缘与同一行中最大元素的下边缘对齐. AbsMiddle 图像的中间与同一行中最大元素的中间对齐. Baseline 图像的下边缘与第一行文本的下边缘对齐. Bottom ...

  5. javascript 学习随笔1

    html部分 <body onload="message()"><!--主题部分加载就调用-->document.getElementById(" ...

  6. Linux/Mac OS 下 批量提交 新增文件到SVN 服务器

    命令行下操作svn没有使用界面形式的TortoiseSVN直观,但是不管怎样,命令行下操作svn还是有它的有点,如果你碰到一次需要svn add许多个文件怎么办?下面的命令可以帮助你解决这个问题 一次 ...

  7. 【集训笔记】贪心算法【HDOJ1052 【HDOJ2037

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  8. SSH整合,"sessionFactory " or "hibernateTemplate " is required异常

    首先遇到的问题就是HibernateDaoSupport引起的,程序中所有的DAO都继承自HibernateDaoSupport,而HibernateDaoSupport需要注入sessionfact ...

  9. kvm libvirt: hostdev passthrough support 解决加密狗冲突问题

    From: "Daniel P. Berrange" <berrange redhat com> To: Guido Günther <agx sigxcpu o ...

  10. 测试DOM0级事件和DOM2级事件的堆叠

    1. 问题 如果大家看过北风网CJ讲师的Javascript视频教程,就可以看到其封装了一个很强的事件添加和删除函数,如下所示 function addEvent(obj, evtype, fn) { ...