最小割...二分染色然后把颜色不同的点的源汇反过来..然后就可以做了.

某个点(x,y):

S->Id(x,y)(回报), Id(x,y)->T(代价), Id(i,j)&&Id(相邻节点)->newId(i,j)(+oo), newId(i,j)->T(回报)

然后染色不同的点反过来就可以了.

初始时答案为2*∑回报, 这样每个点要么割掉1个回报,要么割掉2个回报, 要么割掉1回报+代价.都对应着每一种方案

--------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
 
using namespace std;
 
#define Id(x, y) ((x) * M + (y))
#define chk(x, y) (0 <= (x) && (x) < N && 0 <= (y) && (y) < M)
 
const int maxn = 5009;
const int INF = 1 << 30;
const int dx[4] = {-1, 0, 0, 1};
const int dy[4] = {0, 1, -1, 0};
 
inline int read() {
char c = getchar();
int ret = 0;
for(; !isdigit(c); c = getchar());
for(; isdigit(c); c = getchar()) ret = ret * 10 + c - '0';
return ret;
}
 
struct edge {
int to, cap;
edge *next, *rev;
} E[5000000], *pt = E, *head[maxn], *p[maxn], *cur[maxn];
 
inline void Add(int u, int v, int w) {
pt->to = v;
pt->cap = w;
pt->next = head[u];
head[u] = pt++;
}
inline void AddEdge(int u, int v, int w) {
Add(u, v, w);
Add(v, u, 0);
head[u]->rev = head[v];
head[v]->rev = head[u];
}
 
int N, M, S, T, V, ans;
int h[maxn], cnt[maxn];
 
void Solve() {
for(int i = 0; i < V; i++) cur[i] = head[i];
memset(cnt, 0, sizeof cnt);
memset(h, 0, sizeof h);
cnt[0] = V;
edge* e;
int Flow = 0;
for(int x = S, A = INF; h[S] < V; ) {
for(e = cur[x]; e; e = e->next)
if(e->cap && h[e->to] + 1 == h[x]) break;
if(e) {
A = min(A, e->cap);
cur[x] = p[e->to] = e;
if((x = e->to) == T) {
for(; x != S; x = p[x]->rev->to) {
p[x]->cap -= A;
p[x]->rev->cap += A;
}
Flow += A;
A = INF;
}
} else {
if(!--cnt[h[x]]) break;
h[x] = V;
for(e = head[x]; e; e = e->next) if(e->cap && h[e->to] + 1 < h[x]) {
h[x] = h[e->to] + 1;
cur[x] = e;
}
cnt[h[x]]++;
if(x != S)
x = p[x]->rev->to;
}
}
printf("%d\n", (ans << 1) - Flow);
}
 
void Init() {
N = read(); M = read();
V = N * M; S = V++; T = V++;
for(int i = 0; i < N; i++)
for(int j = 0; j < M; j++)
(i + j) & 1 ? AddEdge(Id(i, j), T, read()) : AddEdge(S, Id(i, j), read());
ans = 0;
for(int i = 0; i < N; i++)
for(int j = 0; j < M; j++) {
int v = read(), np = V++;
ans += v;
if((i + j) & 1) {
AddEdge(S, Id(i, j), v);
AddEdge(np, T, v);
AddEdge(Id(i, j), np, INF);
for(int k = 0; k < 4; k++) {
int x = i + dx[k], y = j + dy[k];
if(chk(x, y))
AddEdge(Id(x, y), np, INF);
}
} else {
AddEdge(Id(i, j), T, v);
AddEdge(S, np, v);
AddEdge(np, Id(i, j), INF);
for(int k = 0; k < 4; k++) {
int x = i + dx[k], y = j + dy[k];
if(chk(x, y))
AddEdge(np, Id(x, y), INF);
}
}
}
}
 
int main() {
Init();
Solve();
return 0;
}

--------------------------------------------------------------------------------

3774: 最优选择

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 96  Solved: 48
[Submit][Status][Discuss]

Description

小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的。一个点如果被选择了,那么可以得到Bij的回报,现在请你帮小N选一个最优的方案,使得回报-代价尽可能大。

Input

第一行两个正整数N,M表示方格图的长与宽。

接下来N行每行M个整数Aij表示控制的代价。

接下来N行每行M个整数Bij表示选择的回报。

Output

一个整数,表示最大的回报-代价(如果一个都不控制那么就是0)。

Sample Input

3 3
1 100 100
100 1 100
1 100 100
2 0 0
5 2 0
2 0 0

Sample Output

8

HINT

对于100%的数据,N,M<=50,Aij,Bij都是小于等于100的正整数。

Source

BZOJ 3774: 最优选择( 最小割 )的更多相关文章

  1. BZOJ 3774 最优选择 (最小割+二分图)

    题面传送门 题目大意:给你一个网格图,每个格子都有$a_{ij}$的代价和$b_{ij}$的回报,对于格子$ij$,想获得$b_{ij}$的回报,要么付出$a_{ij}$的代价,要么$ij$周围四联通 ...

  2. [BZOJ 3774] 最优选择 【最小割】

    题目链接:BZOJ - 3774 题目分析 此题与“文理分科”那道题目有些类似.都是使用最小割来求解,先加上可能获得的权值,在减掉必须舍弃的权值(最小割). 文理分科是规定每个人和 S 连就是选文,和 ...

  3. 【BZOJ3774】最优选择 最小割

    [BZOJ3774]最优选择 Description 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择 ...

  4. BZOJ 2039 人员雇佣 二元关系 最小割

    题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...

  5. BZOJ 1497: [NOI2006]最大获利 最小割

    1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...

  6. bzoj 1391 [Ceoi2008]order(最小割)

    [题意] 有n个有偿工作选做,m个机器,完成一个工作需要若干个工序,完成每个工序需要一个机器,对于一个机器,在不同的工序有不同的租费,但买下来的费用只有一个.问最大获益. [思路] 对于工作和机器建点 ...

  7. [BZOJ 3144] [Hnoi2013] 切糕 【最小割】

    题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...

  8. [BZOJ 3894] 文理分科 【最小割】

    题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...

  9. bzoj 4873: [Shoi2017]寿司餐厅 [最小割]

    4873: [Shoi2017]寿司餐厅 题意:略 唯一会做的... 一眼最小割 就是最大权闭合子图呀 \(s\rightarrow d_{positive} \rightarrow -d_{negt ...

随机推荐

  1. Unity大中华区主办 第二届Unity 游戏及应用大赛 实力派精品手游盘点

    Unity是由Unity Technologies开发的一个让玩家轻松创建诸如三维视频游戏.建筑可视化.实时三维动画等类型互动内容的多平台的综合型游戏开发工具,是一个全面整合的专业游戏引擎.包含如今时 ...

  2. description方法介绍及重写

  3. C#去掉字符串中的汉字

    string str = "测试一下ilove中国so结束"; Regex reg = new Regex(@"[\u4e00-\u9fa5]"); Label ...

  4. SQL初级阶段笔记

    DataBase Management Stystem(数据库管理系统)简称:DBSM:虽然DBSM并不等于数据库,但行业内通常将DBSM称为数据库,所以一般来说数据库就指的是DBSM. 简单来讲DB ...

  5. C# 弹出窗口查看图片以及上传图片

    private void ShowSelectedPicture(string path) { FileStream fs = File.OpenRead(path); //OpenRead ; fi ...

  6. Python核心编程读笔 2

    第三章 python基础 一.语句和语法 \n 标准的行分隔符 \ 继续上一行 ; 将两个语句连接在一行 : 分开代码块的头和体 代码块以缩进块的形式体现 python文件以模块的形式组织 二.变量赋 ...

  7. codeforces 659F . Polycarp and Hay 搜索

    题目链接 遍历每个点, 如果这个点的值能被k整除并且k/a[i][j]后小于等于n*m, 那么就对这个点进行搜索. 将这个点加入队列, 将周围的所有大于等于这个点的值的点也加入队列. 不断重复, 直到 ...

  8. codeforces 652D . Nested Segments 线段树

    题目链接 我们将线段按照右端点从小到大排序, 如果相同, 那么按照左端点从大到小排序. 然后对每一个l, 查询之前有多少个l比他大, 答案就是多少.因为之前的r都是比自己的r小的, 如果l还比自己大的 ...

  9. vb listview 的常用操作

    常用操作:获取当前行数和列数: MsgBox "行数:" & ListView1.ListItems.Count & "列数:" & L ...

  10. ArcEngine栅格和矢量渲染(含可视化颜色带)

    使用ArcEngine9.3开发的栅格和矢量的渲染. 开发环境:ArcEngine9.3,VS2008. 功能:栅格(拉伸和分级)和矢量(简单.唯一值.分级.比例)渲染. 开发界面如图所示. 图1 主 ...