http://poj.org/problem?id=2699 (题目链接)

题意

  给出1张有向完全图。U->V表示U可以打败V并得一分。如果一个人的得分最高,或者他打败所有比自己得分高的人,那么此人就是king。现在按顺序给出每个人的得分,求最多可能有多少个king同时存在。

Solution

  想了半天贪心,然而得分相等的情况真的很不好处理。。真的没想到是最大流。。左转题解:http://blog.csdn.net/sdj222555/article/details/7797257

  考虑这样建图的正确性。

  借用题解的example,假设序列长成这样:1....i......n。那么i不是king有以下这几种情况

  1.i的得分少于得分比它大的人的个数

  这种情况显然i不可能赢所有得分比它大的人,那么这如何在我们所构建的图上体现呢?

  对于i与得分比i大的人的比赛,从i连向它们,显然,这些边不可能满流,因为i不可能赢这么多场,于是不成立。

  2.n已经无法给予i赢的机会

  因为得分比i大的人想要成为King,必须赢得得分比他们更大的人n,而n能够输的场次是有限的。

  如果从i连向(i,n)的比赛使i强行赢得胜利,会使得边(s,n)不满流,于是不成立。

  也许还有别的情况我没考虑到,唉最近思维僵化,没救了,如果有补充请提出╮(╯_╰)╭

细节

  多组数据注意初始化,为什么我还是要16ms。。自带常数。。

代码

// poj2699
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1010;
struct edge {int to,next,w;}e[maxn];
int head[maxn],d[maxn],f[20][20],a[maxn],Max;
int n,m,ans,cnt=1,es,et;
char ch[maxn]; void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],w};head[v]=cnt;
}
void read() {
gets(ch);
n=m=Max=0;int l=strlen(ch);
for (int i=0;i<l;i++) if (ch[i]>='0' && ch[i]<='9') {
m=m*10+ch[i]-'0';
if (i==l || ch[i+1]<'0' || ch[i+1]>'9') a[++n]=m,m=0,Max=max(Max,a[n]);
}
for (int i=1;i<=n;i++)
for (int j=i+1;j<=n;j++) f[i][j]=f[j][i]=++m;
es=n+m+1;et=es+1;
}
void Init() {
cnt=ans=0;
memset(head,0,sizeof(head));
}
bool bfs() {
memset(d,-1,sizeof(d));
queue<int> q;q.push(es);d[es]=0;
while (!q.empty()) {
int x=q.front();q.pop();
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]<0) {
d[e[i].to]=d[x]+1;
q.push(e[i].to);
}
}
return d[et]>0;
}
int dfs(int x,int f) {
if (x==et || f==0) return f;
int used=0,w;
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
w=dfs(e[i].to,min(e[i].w,f-used));
used+=w;
e[i].w-=w;e[i^1].w+=w;
if (used==f) return used;
}
if (!used) d[x]=-1;
return used;
}
void Dinic() {
while (bfs()) ans+=dfs(es,inf);
}
int main() {
int T;scanf("%d",&T);getchar();
while (T--) {
read();
for (int s=1;s<=n;s++) {
Init();
for (int i=1;i<=n;i++) link(es,i,a[i]);
for (int i=1;i<s;i++)
for (int j=i+1;j<=n;j++) link(i,f[i][j]+n,1),link(j,f[i][j]+n,1);
for (int i=s;i<=n;i++)
for (int j=i+1;j<=n;j++) {
link(i,f[i][j]+n,1);
if (a[i]==Max) link(j,f[i][j]+n,1);
}
for (int i=n+1;i<=n+m;i++) link(i,et,1);
Dinic();
if (ans==m) {printf("%d\n",n-s+1);break;}
}
}
return 0;
}

  

【poj2699】 The Maximum Number of Strong Kings的更多相关文章

  1. 【POJ2699】The Maximum Number of Strong Kings(网络流)

    Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...

  2. 【POJ2699】The Maximum Number of Strong Kings(二分,最大流)

    题意: 有n个队伍,两两都有比赛 知道最后每支队伍获胜的场数 求最多有多少队伍,他们战胜了所有获胜场数比自己多的队伍,这些队伍被称为SK N<=50 思路:把每个队伍和它们两两之间的比赛都当做点 ...

  3. 【POJ】【2699】The Maximum Number of Strong Kings

    网络流/最大流/二分or贪心 题目大意:有n个队伍,两两之间有一场比赛,胜者得分+1,负者得分+0,问最多有几只队伍打败了所有得分比他高的队伍? 可以想到如果存在这样的“strong king”那么一 ...

  4. POJ2699 The Maximum Number of Strong Kings

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2102   Accepted: 975 Description A tour ...

  5. POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)

    The Maximum Number of Strong Kings Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2488 ...

  6. POJ 2699 The Maximum Number of Strong Kings Description

    The Maximum Number of Strong Kings   Description A tournament can be represented by a complete graph ...

  7. 【leetcode】1189. Maximum Number of Balloons

    题目如下: Given a string text, you want to use the characters of text to form as many instances of the w ...

  8. poj 2699 The Maximum Number of Strong Kings【最大流+枚举】

    因为n很小所以从大到小枚举答案.(从小到大先排个序,因为显然胜利场次越多越容易成为strong king.然后对于每个枚举出来的ans建图.点分别表示人和比赛.s向所有人连接流量为胜利场次的边,所有比 ...

  9. POJ2699 The Maximum Number of Strong Kings(最大流)

    枚举所有Strong King的状态(最多1024种左右),然后判断是否合法. 判定合法用网络流,源点-比赛-人-汇点,这样连边. 源点向每场比赛连容量为1的边: 如果一场比赛,A和B,A是Stron ...

随机推荐

  1. PAT 1002. 写出这个数 (20)

    读入一个自然数n,计算其各位数字之和,用汉语拼音写出和的每一位数字. 输入格式:每个测试输入包含1个测试用例,即给出自然数n的值.这里保证n小于10100. 输出格式:在一行内输出n的各位数字之和的每 ...

  2. [xen]XenServer6.2增加第二块盘&vm开启自动启动&图形化安装centos

    很多服务器都会多块盘或者做了Raid的多个虚拟磁盘,而安装xenserver后,他只会默认挂载第一快盘,也就是安装xenServer系统的那块. 为XenServer6.2挂载/增加第二块硬盘的方法 ...

  3. script实现的日期表示

    function clockon(bgclock){ var now=new Date(); var year=now.getYear(); var month=now.getMonth(); var ...

  4. [TED] New video technology that reveals an objects hidden properties

    通过视频中,即使1微米的震动,都能够还原成声音. 程序算法结合基础学科,能够发挥出接近无限的力量, 深入挖掘物理特性,形成你想都想不到的效果. 很多技术你都不知道,怎么和国家对抗?所以还是要遵纪守法 ...

  5. maven常用插件: 打包源码 / 跳过测试 / 单独打包依赖项

    一.指定编译文件的编码 maven-compile-plugin <plugin> <groupId>org.apache.maven.plugins</groupId& ...

  6. 我在 CSDN 的小窝

    以后有文章,我会同时更新 博客园 和 CSDN. CSDN:http://blog.csdn.net/u010918003

  7. Struts2 动态结果和带参数的跳转

    完整代码:Struts16ActionResultsDemo.rar 1.动态结果. 有时我们需要在Action里取得我个要转跳的页面 看一下我们的struts.xml <?xml versio ...

  8. Theano2.1.11-基础知识之稀疏

    来自:http://deeplearning.net/software/theano/tutorial/sparse.html sparse 通常来说,稀疏矩阵可以和常规矩阵一样提供相同的功能.两者不 ...

  9. jQuery学习笔记(二):this相关问题及选择器

    上一节的遗留问题,关于this的相关问题,先来解决一下. this的相关问题 this指代的是什么 这个应该是比较好理解的,this就是指代当前操作的DOM对象. 在jQuery中,this可以用于单 ...

  10. Android布局方式_RelativeLayout

    RelativeLayout(相对布局)允许子元素指定它们相对于其他元素或父元素的位置(通过ID指定),因此用户可以右对齐,或上下对齐,或置于屏幕中央的形式来排列两个元素. RelativeLayou ...