http://poj.org/problem?id=2699 (题目链接)

题意

  给出1张有向完全图。U->V表示U可以打败V并得一分。如果一个人的得分最高,或者他打败所有比自己得分高的人,那么此人就是king。现在按顺序给出每个人的得分,求最多可能有多少个king同时存在。

Solution

  想了半天贪心,然而得分相等的情况真的很不好处理。。真的没想到是最大流。。左转题解:http://blog.csdn.net/sdj222555/article/details/7797257

  考虑这样建图的正确性。

  借用题解的example,假设序列长成这样:1....i......n。那么i不是king有以下这几种情况

  1.i的得分少于得分比它大的人的个数

  这种情况显然i不可能赢所有得分比它大的人,那么这如何在我们所构建的图上体现呢?

  对于i与得分比i大的人的比赛,从i连向它们,显然,这些边不可能满流,因为i不可能赢这么多场,于是不成立。

  2.n已经无法给予i赢的机会

  因为得分比i大的人想要成为King,必须赢得得分比他们更大的人n,而n能够输的场次是有限的。

  如果从i连向(i,n)的比赛使i强行赢得胜利,会使得边(s,n)不满流,于是不成立。

  也许还有别的情况我没考虑到,唉最近思维僵化,没救了,如果有补充请提出╮(╯_╰)╭

细节

  多组数据注意初始化,为什么我还是要16ms。。自带常数。。

代码

// poj2699
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1010;
struct edge {int to,next,w;}e[maxn];
int head[maxn],d[maxn],f[20][20],a[maxn],Max;
int n,m,ans,cnt=1,es,et;
char ch[maxn]; void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],w};head[v]=cnt;
}
void read() {
gets(ch);
n=m=Max=0;int l=strlen(ch);
for (int i=0;i<l;i++) if (ch[i]>='0' && ch[i]<='9') {
m=m*10+ch[i]-'0';
if (i==l || ch[i+1]<'0' || ch[i+1]>'9') a[++n]=m,m=0,Max=max(Max,a[n]);
}
for (int i=1;i<=n;i++)
for (int j=i+1;j<=n;j++) f[i][j]=f[j][i]=++m;
es=n+m+1;et=es+1;
}
void Init() {
cnt=ans=0;
memset(head,0,sizeof(head));
}
bool bfs() {
memset(d,-1,sizeof(d));
queue<int> q;q.push(es);d[es]=0;
while (!q.empty()) {
int x=q.front();q.pop();
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]<0) {
d[e[i].to]=d[x]+1;
q.push(e[i].to);
}
}
return d[et]>0;
}
int dfs(int x,int f) {
if (x==et || f==0) return f;
int used=0,w;
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
w=dfs(e[i].to,min(e[i].w,f-used));
used+=w;
e[i].w-=w;e[i^1].w+=w;
if (used==f) return used;
}
if (!used) d[x]=-1;
return used;
}
void Dinic() {
while (bfs()) ans+=dfs(es,inf);
}
int main() {
int T;scanf("%d",&T);getchar();
while (T--) {
read();
for (int s=1;s<=n;s++) {
Init();
for (int i=1;i<=n;i++) link(es,i,a[i]);
for (int i=1;i<s;i++)
for (int j=i+1;j<=n;j++) link(i,f[i][j]+n,1),link(j,f[i][j]+n,1);
for (int i=s;i<=n;i++)
for (int j=i+1;j<=n;j++) {
link(i,f[i][j]+n,1);
if (a[i]==Max) link(j,f[i][j]+n,1);
}
for (int i=n+1;i<=n+m;i++) link(i,et,1);
Dinic();
if (ans==m) {printf("%d\n",n-s+1);break;}
}
}
return 0;
}

  

【poj2699】 The Maximum Number of Strong Kings的更多相关文章

  1. 【POJ2699】The Maximum Number of Strong Kings(网络流)

    Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...

  2. 【POJ2699】The Maximum Number of Strong Kings(二分,最大流)

    题意: 有n个队伍,两两都有比赛 知道最后每支队伍获胜的场数 求最多有多少队伍,他们战胜了所有获胜场数比自己多的队伍,这些队伍被称为SK N<=50 思路:把每个队伍和它们两两之间的比赛都当做点 ...

  3. 【POJ】【2699】The Maximum Number of Strong Kings

    网络流/最大流/二分or贪心 题目大意:有n个队伍,两两之间有一场比赛,胜者得分+1,负者得分+0,问最多有几只队伍打败了所有得分比他高的队伍? 可以想到如果存在这样的“strong king”那么一 ...

  4. POJ2699 The Maximum Number of Strong Kings

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2102   Accepted: 975 Description A tour ...

  5. POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)

    The Maximum Number of Strong Kings Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2488 ...

  6. POJ 2699 The Maximum Number of Strong Kings Description

    The Maximum Number of Strong Kings   Description A tournament can be represented by a complete graph ...

  7. 【leetcode】1189. Maximum Number of Balloons

    题目如下: Given a string text, you want to use the characters of text to form as many instances of the w ...

  8. poj 2699 The Maximum Number of Strong Kings【最大流+枚举】

    因为n很小所以从大到小枚举答案.(从小到大先排个序,因为显然胜利场次越多越容易成为strong king.然后对于每个枚举出来的ans建图.点分别表示人和比赛.s向所有人连接流量为胜利场次的边,所有比 ...

  9. POJ2699 The Maximum Number of Strong Kings(最大流)

    枚举所有Strong King的状态(最多1024种左右),然后判断是否合法. 判定合法用网络流,源点-比赛-人-汇点,这样连边. 源点向每场比赛连容量为1的边: 如果一场比赛,A和B,A是Stron ...

随机推荐

  1. Centos5.8 安装SVN并配置HTTP访问

    安装 svn sudo yum install subversion 测试 svn --version 安装 httpd 的 svn 模块 sudo yum install mod_dav_svn 前 ...

  2. [转]使用URLDecoder和URLEncoder对中文进行处理

    一 URLEncoder HTML 格式编码的实用工具类.该类包含了将 String 转换为 application/x-www-form-urlencoded MIME 格式的静态方法.有关 HTM ...

  3. img加载在IE11,chrome,FF下的不同

    IE11 img.complete 得不到img的大小,会使用img.onload chrome,ff:img.complete 得不到img的大小,会使用自己创建的img加载方法

  4. 增强for循环(forearch)

    增强for循环是为了简化在遍历数组需要先获得数组的长度或者在遍历集合中的元素的时候需要使用迭代器的操作. 引入时间:JDK1.5 语法格式: for(数据类型 变量 :需要迭代的数组或者集合){ } ...

  5. js 数组去重

    这是一道常见的面试题,最近在做[搜索历史记录]功能也用到,开始用了 indexOf 方法,该方法在 ECMA5才有支持,对于 IE8- 就不支持了. 我们可以自己写一个函数(Array对象的方法都是定 ...

  6. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

  7. 给Asp.Net MVC及WebApi添加路由优先级

    一.为什么需要路由优先级 大家都知道我们在Asp.Net MVC项目或WebApi项目中注册路由是没有优先级的,当项目比较大.或有多个区域.或多个Web项目.或采用插件式框架开发时,我们的路由注册很可 ...

  8. JAVA_集合框架虐我千百遍,虐也是一种进步

    1.Collection和Collections区别: Collection是java的一个集合接口,集合类的顶级接口 Collections是一个包装类(工具类),不能被实例化(由于其构造函数设为私 ...

  9. Jquery 页面首次加载方式

    $(document).ready(function(){ alert("111"); }); $(function(){ alert("222"); }); ...

  10. dev gridcontrol纵向合并单元格设置

    1.要设置gridcontrol中指定列(columns中选中指定列)的AllowMerge属性为true; 2.要设置gridview中AllowCellMerge的属性为true; 3.如果只合并 ...