4 Values whose Sum is 0
Time Limit: 15000MS   Memory Limit: 228000K
Total Submissions: 20334   Accepted: 6100
Case Time Limit: 5000MS

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

思路

题意:给定四个长度为n的数组A, B, C, D。 从每个数组中取一个数, 这样得到四个数, 并且这四个数的之和为0. 求这样组合的个数。

题解:直接算出组合数的话,复杂度太高,分成两堆来求,算出 A[i] + B[i] 的值,然后在A[i] + B[i]中找 等于 -C[i] - D[i] 的个数

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 4005;
int cd[maxn*maxn];

int main()
{
	int N;
	while (~scanf("%d",&N))
	{
		int a[maxn],b[maxn],c[maxn],d[maxn];
		for (int i = 0;i < N;i++)	scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
		for (int i = 0;i < N;i++)	for (int j = 0;j < N;j++)	cd[i*N+j] = c[i] + d[j];
		sort(cd,cd + N*N);
		int res = 0;
		for (int i = 0;i < N;i++)
		{
			for (int j = 0;j < N;j++)
			{
				int tmp = -a[i] - b[j];
				int pos1 = lower_bound(cd,cd + N*N,tmp) - cd;
				int pos2 = upper_bound(cd,cd + N*N,tmp) - cd;
				res += pos2 - pos1;
			}
		}
		printf("%d\n",res);
	}
	return 0;
}

  

POJ 2785 4 Values whose Sum is 0(想法题)的更多相关文章

  1. POJ 2785 4 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 13069   Accep ...

  2. POJ - 2785 4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25615   Accep ...

  3. POJ 2785 4 Values whose Sum is 0(折半枚举+二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25675   Accep ...

  4. POJ 2785 4 Values whose Sum is 0(暴力枚举的优化策略)

    题目链接: https://cn.vjudge.net/problem/POJ-2785 The SUM problem can be formulated as follows: given fou ...

  5. POJ 2785 4 Values whose Sum is 0(哈希表)

    [题目链接] http://poj.org/problem?id=2785 [题目大意] 给出四个数组,从每个数组中选出一个数,使得四个数相加为0,求方案数 [题解] 将a+b存入哈希表,反查-c-d ...

  6. POJ 2785 4 Values whose Sum is 0 Hash!

    http://poj.org/problem?id=2785 题目大意: 给你四个数组a,b,c,d求满足a+b+c+d=0的个数 其中a,b,c,d可能高达2^28 思路: 嗯,没错,和上次的 HD ...

  7. poj 2785 4 Values whose Sum is 0(折半枚举(双向搜索))

    Description The SUM problem can be formulated . In the following, we assume that all lists have the ...

  8. [POJ] 2785 4 Values whose Sum is 0(双向搜索)

    题目地址:http://poj.org/problem?id=2785 #include<cstdio> #include<iostream> #include<stri ...

  9. POJ 2785 4 Values whose Sum is 0 (二分)题解

    思路: 如果用朴素的方法算O(n^4)超时,这里用折半二分.把数组分成两块,分别计算前后两个的和,然后枚举第一个再二分查找第二个中是否有满足和为0的数. 注意和有重复 #include<iost ...

随机推荐

  1. 翻译qmake文档(四) Building Common Project Types

    翻译qmake文档 目录 本章原英文文档:http://qt-project.org/doc/qt-5/qmake-common-projects.html 构建常见的项目类型        本章描述 ...

  2. sql基本命令

    --------------------------------------------------------SQL基本命令开始----------------------------------- ...

  3. struct socket 结构详解

    Socket数据结构网络协议CC++     用户使用socket系统调用编写应用程序时,通过一个数字来表示一个socket,所有的操作都在该数字上进行,这个数字称为套接字描述符.在系统调用 的实现函 ...

  4. SVN 修改log信息报错的解决方案

    要实现允许修改log这个功能,只需要在hooks目录下增加一个名为:pre-revprop-change.bat的文件,重启svn即可.该文件内容为:------------------------- ...

  5. javascript 函数声明与函数表达式的区别

    先看一段代码 var f = function g() { return 1; }; if (false) { f = function g(){ return 2; }; } alert(g()); ...

  6. 【CSS3】 线性渐变

    参考地址:http://www.w3cplus.com/css3/new-css3-linear-gradient.html background-image: linear-gradient(to ...

  7. MVC认知路【点点滴滴支离破碎】【一】----新建数据库

    1.App_Data文件夹创建[SQL Server Compact Local Database *]数据库 2.添加链接字符串<add name="MovieDBContext&q ...

  8. RabbitMQ集群、镜像部署配置

    1   RABBITMQ简介及安装 RabbitMQ是一个开源的AMQP实现,服务器端用Erlang语言编写,支持多种客户端,如:Python.Ruby..NET.Java.JMS.C.PHP.Act ...

  9. 通过Keepalived实现Redis Failover自动故障切换功能

    通过Keepalived实现Redis Failover自动故障切换功能[实践分享] 参考资料: http://patrick-tang.blogspot.com/2012/06/redis-keep ...

  10. IntelliJ idea的使用

    1.快捷键 2.插件集成 附录:参考资料