数据结构2 静态区间第K大/第K小
给定数组$A[1...N]$, 区间$[L,R]$中第$K$大/小的数的指将$A[L...R]$中的数从大到小/从小到大排序后的第$K$个.
"静态"指的是不带修改.
这个问题有多种做法:
1. 归并排序
POJ 2104, 静态区间第K小
#include <bits/stdc++.h>
using namespace std; const int N(1e5+);
int a[][N]; void merge(int id, int b, int e){
int mid=(b+e)>>;
for(int l=b, r=mid, i=b; i<e; i++){
if(l==mid) a[id][i]=a[id+][r++];
else if(r==e) a[id][i]=a[id+][l++];
else if(a[id+][l]<=a[id+][r]) a[id][i]=a[id+][l++];
else a[id][i]=a[id+][r++];
}
} void build(int id, int b, int e){
if(b+==e){
scanf("%d", a[id]+b);
return;
}
int mid=(b+e)>>;
build(id+, b, mid);
build(id+, mid, e);
merge(id, b, e);
}
//返回k在[l, r)与[L, R)交集上的Rank
int Rank(int id, int L, int R, int l, int r, int k){
if(l<=L&&R<=r){
return lower_bound(a[id]+L, a[id]+R, k)-a[id]-L;
}
int mid=(L+R)>>;
if(r<=mid){
return Rank(id+, L, mid, l, r, k);
}
if(l>=mid){
return Rank(id+, mid, R, l, r, k);
}
return Rank(id+, L, mid, l, r, k)+Rank(id+, mid, R, l, r, k);
}
//返回(l, r]中Rank(x)>=k的最小的x
int BS(int b, int e, int k, int n){
int l=-1e9-, r=1e9+, mid;
while(r-l>){
mid=(l+r)>>;
if(Rank(, , n, b, e, mid)>=k) r=mid;
else l=mid;
}
return r;
}
int main(){
int n, m; scanf("%d%d", &n, &m);
build(, , n);
for(int l, r, k; m--;){
scanf("%d%d%d", &l, &r, &k), l--;
printf("%d\n", BS(l, r, k, n)-);
}
}
这种做法的想法是将归并排序的过程记录下来, 这样就形成了一棵线段树, 这棵线段树的每个节点记录着它所代表的那个区间[L,R]排好序后的情形.
我们把这样的线段树称做归并排序树, 归并排序树能在$O(\log^2{N})$的复杂度内完成如下查询:
$\text{RANK}(l, r, x)$: 区间$[l,r]$内小于$x$的数的数目.
定义$\text{LEAST}(l, r, k)$为区间$[l,r]$上第$k$小的数, 则有
$\text{LEAST}(l, r, k) = \max \{x \mid \text{RANK}(l, r, x)<k\}$
因而对于询问$\text{LEAST}(l, r, x)$, 我们可以二分答案 $x$ + $\text{RANK}(l, r, x)$判断, 从而在$O(\log{M}\log^2{N})$的复杂度内完成查询, 其中$M$是元素的范围, $N$是区间总长度. 当然, 我们也可以现将数组$A[1\cdots N]$排序, 付出一个$O(N\log{N}$)的预处理复杂度, 然后便可做到单次查询$O(\log^3{N})$.
但我觉得这个复杂度还是太高了, (归并排序)这种做法应该还有优化的可能性, 有待研究.
2. 划分树
数据结构2 静态区间第K大/第K小的更多相关文章
- 无序数组求第k大/第k小的数
根据http://www.cnblogs.com/zhjp11/archive/2010/02/26/1674227.html 博客中所总结的7种解法,我挑了其中的解法3和解法6进行了实现. 解法3: ...
- POJ 2104 静态找区间第k大
静态区间第k大的问题,往往可以利用主席树来解决 这是主席树的第一道题 主席树大概可以理解为在n个节点上都建立一棵线段树,但是想想会超出内存 每一个节点保存的线段树都记录当前整段前缀区间的信息 但是因为 ...
- HDU3473--Minimum Sum(静态区间第k大)
Minimum Sum Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tota ...
- 主席树初步学习笔记(可持久化数组?静态区间第k大?)
我接触 OI也快1年了,然而只写了3篇博客...(而且还是从DP跳到了主席树),不知道我这个机房吊车尾什么时候才能摸到大佬们的脚后跟orz... 前言:主席树这个东西,可以说是一种非常畸形的数据结构( ...
- poj2104&&poj2761 (主席树&&划分树)主席树静态区间第k大模板
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 43315 Accepted: 14296 Ca ...
- 静态区间第k大(主席树)
POJ 2104为例(主席树入门题) 思想: 可持久化线段树,也叫作函数式线段树,也叫主席树(高大上). 可持久化数据结构(Persistent data structure):利用函数式编程的思想使 ...
- 静态区间第k大(归并树)
POJ 2104为例 思想: 利用归并排序的思想: 建树过程和归并排序类似,每个数列都是子树序列的合并与排序. 查询过程,如果所查询区间完全包含在当前区间中,则直接返回当前区间内小于所求数的元素个数, ...
- 主席树学习笔记(静态区间第k大)
题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输出 ...
- 主席树(静态区间第k大)
前言 如果要求一些数中的第k大值,怎么做? 可以先就这些数离散化,用线段树记录每个数字出现了多少次. ... 那么考虑用类似的方法来求静态区间第k大. 原理 假设现在要有一些数 我们可以对于每个数都建 ...
随机推荐
- Ehcache 整合Spring 使用页面、对象缓存
Ehcache 整合Spring 使用页面.对象缓存 Ehcache在很多项目中都出现过,用法也比较简单.一 般的加些配置就可以了,而且Ehcache可以对页面.对象.数据进行缓存,同时支持集群/分布 ...
- 为什么Javascript中的基本类型能调用方法?
我们从一道笔试题说起: var str = 'string'; str.pro = 'hello'; console.log(str.pro + 'world'); 输出啥?要理解这个问题,我们得从头 ...
- js的单引号,双引号,转移符
这里我们看到想在style后边在插入一个样式的变量,data.cssSytle.a是做边和邮编都是"",并且没有转移符
- Repeater——数据库控件学习
1.Repeater控件的使用:(用于重复加载一些内容,把要重复加载的代码写在ItemTemplate里面) 脱完控件后,在设计视图中配置数据源即可~ 2.ListView(数据显示,分页此控件一拖千 ...
- C#中的System.Speech命名空间初探
本程序是口算两位数乘法,随机生成两个两位数,用语音读出来.然后开启语音识别,接受用户输入,知道答案正确关闭语音识别.用户说答案时,可以说“再说一遍”重复题目. 关键是GrammarBuilder和Ch ...
- 请问-bash-4.1$ 出现故障的原理及解决办法?
请问如下登录环境故障的原理及解决办法? [root@ ~]# su - luoahong -bash-4.1$ -bash-4.1$ 解答: [luoahong@ ~]$ rm -rf /home/l ...
- Andriod ADB开启Activity、Service以及BroadCast(包括参数的传递)
/*****************开启Activity 并传递参数*******************/ 使用am命令启动Activity并传递参数的方法,也能用作C层与Java进行数据传递的一 ...
- 唯一分解定理 poj 1365
一行代表一个数 x 给你底数和指数 求x-1的唯一分解定理的底数和指数 从大到小输出 #include<stdio.h> #include<string.h> #include ...
- 查看本机ip
视窗+R 然后输入cmd, enter 后再黑色窗口里输入 ipconfig
- Jquery-pagination.js分页处理
首先提供pagination.js的插件源码 /** * This jQuery plugin displays pagination links inside the selected elemen ...