题意

\(q(1 \le q \le 10000)\)次询问,每一次求\((x^2+x+1)^n\)的第\(k\)项系数模3。

分析

听说正解是\(\binom{2n}{m} (m \% 2+1)\),表示不会。

我来一个说一个我yy出来的玄学做法

\[(x^2+x+1)^n = \sum_{i=0}^{n} \binom{n}{i} \sum_{j=0}^{i} \binom{i}{j} x^{i+j}
\]

第\(k\)项的系数就是\(\sum_{i=0}^{k} \binom{n}{i} \binom{i}{k-i} \mod \ 3\)

$$
\begin{align}
& \sum_{i=0}^{k} \binom{n}{i} \binom{i}{k-i} \mod \ 3 \\
= & \sum_{j=0}^{2} \sum_{i=0}^{\left \lfloor \frac{k-j}{3} \right \rfloor} \binom{n \% 3}{(3i+j) \% 3} \binom{\left \lfloor \frac{n}{3} \right \rfloor}{\left \lfloor \frac{3i+j}{3} \right \rfloor} \binom{(3i+j) \% 3}{(k-(3i+j)) \% 3} \binom{\left \lfloor \frac{3i+j}{3} \right \rfloor}{\left \lfloor \frac{k-(3i+j)}{3} \right \rfloor} \mod \ 3 \\
= & \sum_{j=0}^{2} \binom{n \% 3}{j} \binom{j}{(k-j) \% 3} \sum_{i=0}^{\left \lfloor \frac{k-j}{3} \right \rfloor} \binom{\left \lfloor \frac{n}{3} \right \rfloor}{i} \binom{i}{\left \lfloor \frac{k-j}{3} \right \rfloor-i} \mod \ 3\\
\end{align}
$$

然后变成3个子问题,由于可以根据\(\binom{n%3}{j} \binom{j}{(k-j)%3}\)是否为\(0\)还有\(\left \lfloor \frac{k-1}{3} \right \rfloor == \left \lfloor \frac{k-2}{3} \right \rfloor\)之类的强力减枝,所以很快。

虽然理论复杂度是单次查询\(O(k)\)的,不过最后我还是过了= =很快= =

复杂度属于玄学。

题解

分析里说得很清楚了。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int C(int n, int m) {
return n<m?0:(n==0?1:(n==1?1:(m==1?2:1)));
}
int lucas(ll n, ll m) {
return m==0?1:(m==1?n%3:(n%3*((n-1)%3)*2%3));
}
int f(ll n, ll k) {
if(k<=2) {
int ans=0;
for(int i=0; i<=k; ++i) {
ans+=lucas(n, i)*lucas(i, k-i);
}
return ans%3;
}
int t1=C(n%3, 0)*C(0, (k-0)%3)%3, nx1=t1==0?0:f(n/3, (k-0)/3),
t2=C(n%3, 1)*C(1, (k-1)%3)%3, nx2=t2==0?0:((t1&&(k%3>0))?nx1:f(n/3, (k-1)/3)),
t3=C(n%3, 2)*C(2, (k-2)%3)%3, nx3=t3==0?0:((t2&&(k%3>1))?nx2:f(n/3, (k-2)/3));
return (t1*nx1+t2*nx2+t3*nx3)%3;
}
ll n, k;
int main() {
int T;
scanf("%d", &T);
while(T--) {
scanf("%lld%lld", &n, &k);
printf("%d\n", f(n, k));
}
return 0;
}

【BZOJ】1436: Poi2003 Trinomial的更多相关文章

  1. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  2. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  3. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  4. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  5. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  6. 【BZOJ】【3083】遥远的国度

    树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...

  7. 【BZOJ】【2434】【NOI2011】阿狸的打字机

    AC自动机+DFS序+BIT 好题啊……orz PoPoQQQ 大爷 一道相似的题目:[BZOJ][3172][TJOI2013]单词 那道题也是在fail树上数有多少个点,只不过这题是在x的fail ...

  8. 【BZOJ】【2738】&【Tsinsen】【A1333】矩阵乘法

    整体二分+树状数组 过了[BZOJ][2527][POI2011]Meteors以后这题就没那么难啦~ 关键是[从小到大]依次插入数字,然后整体二分每个查询的第k大是在第几次插入中被插入的……嗯大概就 ...

  9. 【BZOJ】【3170】【TJOI2103】松鼠聚会

    切比雪夫距离+曼哈顿距离 题解:http://www.cnblogs.com/zyfzyf/p/4105456.html 其实应该先做这题再做[BZOJ][3210]花神的浇花集会的吧…… 我们发现d ...

随机推荐

  1. Jsonp跨域访问原理和实例

    >>什么是跨域 出于安全方面的考虑,页面中的JavaScript无法访问其他服务器上的数据,当前域名的js只能读取同域下的窗口属性,即同源策略.而跨域就是通过某些手段来绕过同源策略限制,实 ...

  2. java的final用法

    转自:http://blog.163.com/maomaoyu_1012/blog/static/19060130520116269329894/ 1.         修饰基础数据成员的final ...

  3. Pyqt 一个简单的浏览器

    使用QtWebKit 做一个简单的浏览器. mybrowserUI.ui <?xml version="1.0" encoding="UTF-8"?> ...

  4. uploadify文件批量上传

    uploadify能够时间文件的批量上传,JS文件包下载地址,使用说明可以参考官网文档(http://www.uploadify.com/documentation/) 使用方法如下代码: $(&qu ...

  5. 第六届acm省赛总结(退役贴)

    前言: 这是我的退役贴,之前发到了空间里,突然想到也要在博客里发一篇,虽然我很弱,但是要离开了还是有些感触,写出来和大家分享一下,希望不要见笑.回来看看,这里也好久没有更新了,这一年确实有些懈怠,解题 ...

  6. HTML5应用之文件拖拽上传

    使用HTML5的文件API,可以将操作系统中的文件拖放到浏览器的指定区域,实现文件上传到服务器.本文将结合实例讲解HTML5+jQuery+PHP实现拖拽上传图片的过程,来看下HTML5的魅力吧. H ...

  7. 攻城狮在路上(叁)Linux(十二)--- Linux的目录与路径

    一.相对路径与绝对路径: A.绝对路径:由根目录/开始写起的路径,例如 /usr/share/doc B.相对路径:不是由根目录/开始写起的路径. 二.目录的相关操作: 1.cd: 目录切换 cd ~ ...

  8. 注解:【有连接表的】Hibernate单向N->N关联

    Person与Address关联:单向N->N,[有连接表的] #和单向1->N关联代码完全相同,控制关系的一端需要增加一个set类型的属性,被关联的持久化实例以集合形式存在. #N-&g ...

  9. 解决Android解析图片的OOM问题!!!(转)

    大家好,今天给大家分享的是解决解析图片的出现oom的问题,我们可以用BitmapFactory这里的各种Decode方法,如果图片很小的话,不会出现oom,但是当图片很大的时候 就要用BitmapFa ...

  10. WebView相关

    Android WebView使用基础 Android WebView中的JavaScript代码使用 很不错的例子:android webview js交互 第一节 (java和js交互)