题意

\(q(1 \le q \le 10000)\)次询问,每一次求\((x^2+x+1)^n\)的第\(k\)项系数模3。

分析

听说正解是\(\binom{2n}{m} (m \% 2+1)\),表示不会。

我来一个说一个我yy出来的玄学做法

\[(x^2+x+1)^n = \sum_{i=0}^{n} \binom{n}{i} \sum_{j=0}^{i} \binom{i}{j} x^{i+j}
\]

第\(k\)项的系数就是\(\sum_{i=0}^{k} \binom{n}{i} \binom{i}{k-i} \mod \ 3\)

$$
\begin{align}
& \sum_{i=0}^{k} \binom{n}{i} \binom{i}{k-i} \mod \ 3 \\
= & \sum_{j=0}^{2} \sum_{i=0}^{\left \lfloor \frac{k-j}{3} \right \rfloor} \binom{n \% 3}{(3i+j) \% 3} \binom{\left \lfloor \frac{n}{3} \right \rfloor}{\left \lfloor \frac{3i+j}{3} \right \rfloor} \binom{(3i+j) \% 3}{(k-(3i+j)) \% 3} \binom{\left \lfloor \frac{3i+j}{3} \right \rfloor}{\left \lfloor \frac{k-(3i+j)}{3} \right \rfloor} \mod \ 3 \\
= & \sum_{j=0}^{2} \binom{n \% 3}{j} \binom{j}{(k-j) \% 3} \sum_{i=0}^{\left \lfloor \frac{k-j}{3} \right \rfloor} \binom{\left \lfloor \frac{n}{3} \right \rfloor}{i} \binom{i}{\left \lfloor \frac{k-j}{3} \right \rfloor-i} \mod \ 3\\
\end{align}
$$

然后变成3个子问题,由于可以根据\(\binom{n%3}{j} \binom{j}{(k-j)%3}\)是否为\(0\)还有\(\left \lfloor \frac{k-1}{3} \right \rfloor == \left \lfloor \frac{k-2}{3} \right \rfloor\)之类的强力减枝,所以很快。

虽然理论复杂度是单次查询\(O(k)\)的,不过最后我还是过了= =很快= =

复杂度属于玄学。

题解

分析里说得很清楚了。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int C(int n, int m) {
return n<m?0:(n==0?1:(n==1?1:(m==1?2:1)));
}
int lucas(ll n, ll m) {
return m==0?1:(m==1?n%3:(n%3*((n-1)%3)*2%3));
}
int f(ll n, ll k) {
if(k<=2) {
int ans=0;
for(int i=0; i<=k; ++i) {
ans+=lucas(n, i)*lucas(i, k-i);
}
return ans%3;
}
int t1=C(n%3, 0)*C(0, (k-0)%3)%3, nx1=t1==0?0:f(n/3, (k-0)/3),
t2=C(n%3, 1)*C(1, (k-1)%3)%3, nx2=t2==0?0:((t1&&(k%3>0))?nx1:f(n/3, (k-1)/3)),
t3=C(n%3, 2)*C(2, (k-2)%3)%3, nx3=t3==0?0:((t2&&(k%3>1))?nx2:f(n/3, (k-2)/3));
return (t1*nx1+t2*nx2+t3*nx3)%3;
}
ll n, k;
int main() {
int T;
scanf("%d", &T);
while(T--) {
scanf("%lld%lld", &n, &k);
printf("%d\n", f(n, k));
}
return 0;
}

【BZOJ】1436: Poi2003 Trinomial的更多相关文章

  1. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  2. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  3. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  4. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  5. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  6. 【BZOJ】【3083】遥远的国度

    树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...

  7. 【BZOJ】【2434】【NOI2011】阿狸的打字机

    AC自动机+DFS序+BIT 好题啊……orz PoPoQQQ 大爷 一道相似的题目:[BZOJ][3172][TJOI2013]单词 那道题也是在fail树上数有多少个点,只不过这题是在x的fail ...

  8. 【BZOJ】【2738】&【Tsinsen】【A1333】矩阵乘法

    整体二分+树状数组 过了[BZOJ][2527][POI2011]Meteors以后这题就没那么难啦~ 关键是[从小到大]依次插入数字,然后整体二分每个查询的第k大是在第几次插入中被插入的……嗯大概就 ...

  9. 【BZOJ】【3170】【TJOI2103】松鼠聚会

    切比雪夫距离+曼哈顿距离 题解:http://www.cnblogs.com/zyfzyf/p/4105456.html 其实应该先做这题再做[BZOJ][3210]花神的浇花集会的吧…… 我们发现d ...

随机推荐

  1. DC/DC与LDO的差别

    转自:http://bbs.eetop.cn/thread-459121-1-1.html 在平时的学习中,我们都有接触LDO和DC/DC这一类的电源产品,但作为学生的我们队这些东西可能了解不够深刻, ...

  2. 南阳理工 题目9:posters(离散化+线段树)

    posters 时间限制:1000 ms  |  内存限制:65535 KB 难度:6   描述 The citizens of Bytetown, AB, could not stand that ...

  3. 攻城狮在路上(叁)Linux(二十一)--- linux磁盘检查 fsck \ badblocks

    若系统掉电或磁盘发生问题,可利用fsck命令对文件系统进行检查.这一步是可选的,尽量少用. 使用前的建议:使用fsck命令时,被检查的分区务必不要挂载在系统上. 一.fsck: 命令格式:fsck [ ...

  4. ASP.NET 5中的ASP.NET Bundles跑到哪里去了?

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 众所周知,在ASP.NET MVC中很早就存在一个所谓的"bundling and ...

  5. 监听报错 TNS-00525: Insufficient privilege for operation 11gR2 + 连接报错ORA-12537: TNS:connection closed

    1.TNS-00525: Insufficient privilege for operation Started with pid= Listening on: (DESCRIPTION=(ADDR ...

  6. 关于三星I9305出现android.process.acore提示问题

    背景:自己用百度云同步通讯录和用微信电话本删除联系人的时候总出现提示acore问题,为此上网找了许久. 网络上多说解决方案为:把Calendar.apk和CalendarProvider.apk两个文 ...

  7. Java8中的default方法

    default方法 Java 8中引入了一个新的概念,叫做default方法,也可以称为Defender方法,或者虚拟扩展方法(Virtual extension methods). Default方 ...

  8. 介绍linux下vi命令的使用

    功能最强大的编辑器之一——vivi是所有UNIX系统都会提供的屏幕编辑器,它提供了一个视窗设备,通过它可以编辑文件.当然,对UNIX系统略有所知的人,或多或少都觉得vi超级难用,但vi是最基本的编辑器 ...

  9. 映射一对多双向关联关系 cascade、inverse、属性

    当类与类之间建立了关联,就可以方便的从一个对象导航到另一个对象.或者通过集合导航到一组对象.例如: 对于给定的Emp对象,如果想获得与它关联的Dept对象,只要调用如下方法 Dept dept=emp ...

  10. 完善SQL农历转换函数

    -------------------------------------------------------------------- --  Author : 原著:          改编:ht ...