[问题2014A02] 解答三(降阶公式法)
[问题2014A02] 解答三(降阶公式法)
将矩阵 \(A\) 写成如下形式:
\[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & -2a_n \end{pmatrix}\]
\[+\begin{pmatrix} a_1 & 1 \\ a_2 & 1 \\ \vdots & \vdots \\ a_{n-1} & 1 \\ a_n & 1 \end{pmatrix}\cdot I_2^{-1}\cdot\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ a_1 & a_2 & \cdots & a_{n-1} & a_n \end{pmatrix}.\]
由降阶公式可得
\[|A|=\begin{vmatrix} -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & -2a_n \end{vmatrix}\cdot\Bigg|I_2+\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ a_1 & a_2 & \cdots & a_{n-1} & a_n \end{pmatrix}\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & -2a_n \end{pmatrix}^{-1}\begin{pmatrix} a_1 & 1 \\ a_2 & 1 \\ \vdots & \vdots \\ a_{n-1} & 1 \\ a_n & 1 \end{pmatrix}\Bigg|\]
\[=(-2)^n\prod_{i=1}^na_i\begin{vmatrix} 1-\frac{n}{2} & -\frac{1}{2}\sum_{i=1}^n\frac{1}{a_i} \\ -\frac{1}{2}\sum_{i=1}^na_i & 1-\frac{n}{2} \end{vmatrix}\]
\[=(-2)^{n-2}\prod_{i=1}^na_i\bigg((n-2)^2-\Big(\sum_{i=1}^na_i\Big)\Big(\sum_{i=1}^n\frac{1}{a_i}\Big)\bigg). \quad\Box\]
[问题2014A02] 解答三(降阶公式法)的更多相关文章
- [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)
[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...
- [问题2014A01] 解答三(升阶法,由董麒麟同学提供)
[问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & ...
- [问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)
[问题2014A02] 解答一(两次升阶法,由张钧瑞同学.董麒麟同学提供) 将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式: \[|B|=\begin{vmatrix} 1 &a ...
- 製程能力介紹(SPC introduction) ─ 製程能力的三種表示法
製程能力的三種表示法 Ck: 準度指標 (accuracy) Ck=(M-X)/(T/2) Cp: 精度指標 (precision) Cp=T/(6σp) 規格為單邊時:Cp=(Tu-X)/3 ...
- 实战Excel Add-in的三种玩法
作者:陈希章 发表于 2017年11月26日 前言 这个系列文章应该有一阵子没有更新了,原因是一如既往的多,但是根本所在是我对于某些章节其实还没有完全想好怎么写,尤其是对于Office Add-in这 ...
- C语言复习---获取最小公倍数(公式法:两个数相乘等于最小公倍数乘以最大公约数)
公式法:两个数相乘等于最小公倍数乘以最大公约数 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib ...
- squid+stunnel+用户密码认证的三种玩法
没办法,应用越来越深入,就会越来越多要求. squid+stunnel+用户密码认证的场景至少以下三个,我会遇到. 1,标准玩法 在服务器上建一个SQUID,加密码认证,然后,其它人通过它上网.(不要 ...
- 《统计学习方法》笔记三 k近邻法
本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个 ...
- FDCT变换 公式法
// 对亮度信号进行FDCT变换// @param data 亮度信号的存储数组void CompressEncode::standardFDCT(BYTE data[MATRIXSIZE] ...
随机推荐
- HTTP Error 403没有了,但是中文全都是乱码。又是怎么回事?
首先是简单的网页抓取程序: [python] import sys, urllib2req = urllib2.Request("http://blog.csdn.net/nevasun&q ...
- StringUtils.isEmpty和StringUtils.isBlank用法
StringUtils 方法的操作对象是 java.lang.String 类型的对象,是 JDK 提供的 String 类型操作方法的补充,并且是 null 安全的(即如果输入参数 String 为 ...
- 与子域名共用session信息
参考自 http://www.jb51.net/article/19664.htm 下面的步骤只使用于两个域名在同一个服务起得情况下,如果不在一个服务器上,就需要考虑通过数据库来存储session信息 ...
- ios编程之网络请求
网络请求有GET请求和POST请求,get和post实现的时候可以选择同步或者异步实现.看一个请求是GET还是POST就看网址后面有没有携带请求体. GET与POST 区别 1.get请求 请求的网 ...
- Git add 常见用法
Git add git add [参数] [--] <路径> //作用就是将我们需要提交的代码从工作区添加到暂存区,就是告诉git系统,我们要提交哪些文件,之后就可以使用gi ...
- Java提高篇——equals()方法和“==”运算符
equals() 超类Object中有这个equals()方法,该方法主要用于比较两个对象是否相等.该方法的源码如下: public boolean equals(Object obj) { retu ...
- lc.exe已退出代码为1
1.把项目文件夹下Properties文件夹下的licenses.licx文件删除,重新编译即可: 2.文本方式打开*.csproj文件,在文件中查找licenses.licx字样,删除对应节点. 之 ...
- 实例演示使用RDIFramework.NET 框架的工作流组件进行业务流程的定义—请假申请流程-Web
实例演示使用RDIFramework.NET 框架的工作流组件 进行业务流程的定义—请假申请流程-Web 参考文章: RDIFramework.NET — 基于.NET的快速信息化系统开发框架 — 系 ...
- 应该具备的调试技能(java)
------Java部分---------- 1. tomcat在eclispe中怎样启动调试模式2. 带有main方法的Java应用程序怎样启动调试模式3. 调试在eclispe中的快捷键 F5 F ...
- IOS基础面试题
最近离职了,找工作,光会做项目,对基础不熟,今天就总结了一点面试题. 废话不多说,上题吧: 1.objective-c中的数字对象都有哪些,简述它们与基本数据类型的区别是什么. 基本类型和C一样,主要 ...