[问题2014A02] 解答三(降阶公式法)

将矩阵 \(A\) 写成如下形式:

\[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & -2a_n \end{pmatrix}\]

\[+\begin{pmatrix} a_1 & 1 \\ a_2 & 1 \\ \vdots & \vdots \\ a_{n-1} & 1 \\ a_n & 1 \end{pmatrix}\cdot I_2^{-1}\cdot\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ a_1 & a_2 & \cdots & a_{n-1} & a_n \end{pmatrix}.\]

由降阶公式可得

\[|A|=\begin{vmatrix} -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & -2a_n \end{vmatrix}\cdot\Bigg|I_2+\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ a_1 & a_2 & \cdots & a_{n-1} & a_n \end{pmatrix}\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & -2a_n \end{pmatrix}^{-1}\begin{pmatrix} a_1 & 1 \\ a_2 & 1 \\ \vdots & \vdots \\ a_{n-1} & 1 \\ a_n & 1 \end{pmatrix}\Bigg|\]

\[=(-2)^n\prod_{i=1}^na_i\begin{vmatrix} 1-\frac{n}{2} & -\frac{1}{2}\sum_{i=1}^n\frac{1}{a_i} \\ -\frac{1}{2}\sum_{i=1}^na_i & 1-\frac{n}{2} \end{vmatrix}\]

\[=(-2)^{n-2}\prod_{i=1}^na_i\bigg((n-2)^2-\Big(\sum_{i=1}^na_i\Big)\Big(\sum_{i=1}^n\frac{1}{a_i}\Big)\bigg). \quad\Box\]

[问题2014A02] 解答三(降阶公式法)的更多相关文章

  1. [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)

    [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...

  2. [问题2014A01] 解答三(升阶法,由董麒麟同学提供)

    [问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & ...

  3. [问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)

    [问题2014A02] 解答一(两次升阶法,由张钧瑞同学.董麒麟同学提供) 将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式: \[|B|=\begin{vmatrix} 1 &a ...

  4. 製程能力介紹(SPC introduction) ─ 製程能力的三種表示法

    製程能力的三種表示法 Ck: 準度指標 (accuracy)   Ck=(M-X)/(T/2) Cp: 精度指標 (precision)   Cp=T/(6σp) 規格為單邊時:Cp=(Tu-X)/3 ...

  5. 实战Excel Add-in的三种玩法

    作者:陈希章 发表于 2017年11月26日 前言 这个系列文章应该有一阵子没有更新了,原因是一如既往的多,但是根本所在是我对于某些章节其实还没有完全想好怎么写,尤其是对于Office Add-in这 ...

  6. C语言复习---获取最小公倍数(公式法:两个数相乘等于最小公倍数乘以最大公约数)

    公式法:两个数相乘等于最小公倍数乘以最大公约数 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib ...

  7. squid+stunnel+用户密码认证的三种玩法

    没办法,应用越来越深入,就会越来越多要求. squid+stunnel+用户密码认证的场景至少以下三个,我会遇到. 1,标准玩法 在服务器上建一个SQUID,加密码认证,然后,其它人通过它上网.(不要 ...

  8. 《统计学习方法》笔记三 k近邻法

    本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个 ...

  9. FDCT变换 公式法

    // 对亮度信号进行FDCT变换// @param   data    亮度信号的存储数组void CompressEncode::standardFDCT(BYTE data[MATRIXSIZE] ...

随机推荐

  1. Android课程---用进度条改变图片透明度

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...

  2. String-原型属性

    <script> /*将trim方法定义到字符串对象中 *使用字符串的原型属性来完成 *原型prototype:就是该对象的一个描述,该描述中如果添加新功能,那么该对象就具备这些新功能. ...

  3. ThinkPHP 3.2.3 简单后台模块开发(二)RBAC

    RBAC(Role-Based Access Controll)基于角色的访问控制 在 ThinkPHP3.2.3 中 RBAC 类位于 /ThinkPHP/Library/Org/Util/Rbac ...

  4. 算法与数据结构题目的 PHP 实现:栈和队列 由两个栈组成的队列

    思路:同样使用 PHP 的数组模拟栈.栈的特点是先进后出,队列的特点是先进先出,可以用第一个栈(StackPush)作为压入栈,压入数据的时候只往这个栈中压入数据,第二个栈作(StackPop)为弹出 ...

  5. [原创]CI持续集成系统环境---部署gerrit环境完整记录

    开发同事提议在线上部署一套gerrit代码审核环境,不用多说,下面就是自己部署gerrit的操作记录. 提前安装好java环境,mysql环境,nginx环境 测试系统:centos6.5 下载下面三 ...

  6. 便捷从使用git开始

    每次浏览网站上传代码,实在过于不便,为此我们引入git来管理我们的代码. 查看帮助手册是了解其的最佳路径,coding.net也不例外.通过浏览https://coding.net/help/,你会发 ...

  7. Java学习-039-源码 jar 包的二次开发扩展实例(源码修改)

    最近在使用已有的一些 jar 包时,发现有些 jar 包中的一些方法无法满足自己的一些需求,例如返回固定的格式,字符串处理等等,因而需要对原有 jar 文件中对应的 class 文件进行二次开发扩展, ...

  8. Progressive Scanning (逐行扫描) vs Interlaced Scanning (隔行扫描)

    source: http://sh.sina.com.cn/20041207/231443445.shtml 逐行扫描每一帧图像均是由电子束顺序地一行接着一行连续扫描而成.要得到稳定的逐行扫描图像,每 ...

  9. svn的差异查看器和合并工具换成BCompare.exe

    svn的差异查看器和合并工具换成BCompare.exe

  10. python 安装easy_install和pip

    做个记录 easy_install和pip都是用来下载安装Python一个公共资源库PyPI的相关资源包的 首先安装easy_install 下载地址:https://pypi.python.org/ ...