题目传送门

题意:f(n) = a1f(n − 1) + a2f(n − 2) + a3f(n − 3) + . . . + adf(n − d), for n > d,求f (n) % m。训练指南的题目

分析:令:.则

#include <bits/stdc++.h>

int d, n, m;
int a[16], f[16]; struct Mat {
int m[17][17];
int row, col;
Mat() {
//row = col = 16;
memset (m, 0, sizeof (m));
}
void init(int sz) {
row = col = sz;
for (int i=1; i<row; ++i) {
m[i][i+1] = 1;
}
int c = sz - 1;
for (int i=2; i<=col; ++i) {
m[sz][i] = a[c--];
}
}
void change(int sz) {
row = col = sz;
for (int i=1; i<=sz; ++i) {
m[i][i] = 1;
}
}
}; Mat operator * (const Mat &a, const Mat &b) {
Mat ret;
ret.row = a.row; ret.col = b.col;
for (int i=1; i<=a.row; ++i) {
for (int j=1; j<=b.col; ++j) {
for (int k=1; k<=a.col; ++k) {
int &r = ret.m[i][j];
r = (r + 1ll * a.m[i][k] * b.m[k][j]) % m;
}
}
}
return ret;
} Mat operator ^ (Mat x, int n) {
Mat ret; ret.change (d+1);
while (n) {
if (n & 1) {
ret = ret * x;
}
x = x * x; n >>= 1;
}
return ret;
} //Running_Time
int main() {
while (scanf ("%d%d%d", &d, &n, &m) == 3) {
if (!d && !n && !m) {
break;
}
for (int i=1; i<=d; ++i) {
scanf ("%d", a+i);
}
for (int i=1; i<=d; ++i) {
scanf ("%d", f+i);
}
if (n <= d) {
printf ("%d\n", f[n] % m);
} else {
Mat ans, Fd;
ans.init (d + 1);
ans = ans ^ (n - d); Fd.row = d + 1; Fd.col = 1;
for (int i=2; i<=d+1; ++i) {
Fd.m[i][1] = f[i-1];
} ans = ans * Fd;
printf ("%d\n", ans.m[d+1][1]);
}
} return 0;
}

  

矩阵快速幂 UVA 10870 Recurrences的更多相关文章

  1. UVa 10870 Recurrences (矩阵快速幂)

    题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340).a1 , a2 ..... ad.f(1), f(2) .. ...

  2. UVA - 10870 Recurrences 【矩阵快速幂】

    题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...

  3. UVA 10870 - Recurrences(矩阵高速功率)

    UVA 10870 - Recurrences 题目链接 题意:f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), ...

  4. POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】

    典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...

  5. uva 10518 - How Many Calls?(矩阵快速幂)

    题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...

  6. Tribonacci UVA - 12470 (简单的斐波拉契数列)(矩阵快速幂)

    题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3);  求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cst ...

  7. UVA - 11149 (矩阵快速幂+倍增法)

    第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio ...

  8. UVA10870—Recurrences(简单矩阵快速幂)

    题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第 ...

  9. UVA10870 Recurrences —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/UVA-10870 题意: 典型的矩阵快速幂的运用.比一般的斐波那契数推导式多了几项而已. 代码如下: #include <bit ...

随机推荐

  1. Eclipse启动时出现错误 An internal error occurred during: “Updating indexes”

    在Eclipse的workspace下有个.metadata文件夹,Eclipse出现异常的log文件就在这个目录下. 最近出现了这样的错误: 查看日志文件发现:     !ENTRY org.ecl ...

  2. Android 毛玻璃效果

    muzei live wallpaper https://github.com/romannurik/muzei

  3. 列出zip文件内全部内容 当前目录下的所有文件压缩成zip格式的文件(file.zip)

    [root@ok Desktop]# zip -r image.zip ./*.jpg adding: 20161007_113743.jpg (deflated 0%) adding: 201610 ...

  4. 《CLR via C#》读书笔记(5)基元类型、引用类型和值类型

    5.1 基元类型 编译器直接支持的数据类型称为基元类型(primitive type). 以下4行到吗生成完全相同的IL int a = 0; //最方便的语法 System.Int32 b = 0; ...

  5. Delphi面向对象的方法

    方法是属于一个给定对象的过程和函数,方法反映的是对象的行为而不是数据,前一篇提到的对象的两个重要的方法:构造方法和析构方法. 为了使对象能执行各种功能,你能在对象中定制方法 创建一个方法用两个步骤,首 ...

  6. react.js 多个组件集成示例

    这个看得有点懵, 可能要结合其它实例看. html <!DOCTYPE html> <html> <head> <script src="http: ...

  7. poj 2503:Babelfish(字典树,经典题,字典翻译)

    Babelfish Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 30816   Accepted: 13283 Descr ...

  8. poj 1003:Hangover(水题,数学模拟)

    Hangover Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 99450   Accepted: 48213 Descri ...

  9. Power BI for Office 365介绍

    微软在七月份发布了一个新产品,它建立在微软的云的第一个数据平台- Power BI for Office 365.Satya Nadella,服务器和工具业务总裁,在当天的上午在微软的年度全球合作伙伴 ...

  10. <转>Hibernate的优、缺点(局限性)

    本文原文链接:http://hi.baidu.com/ko22223/item/dd9f6900015adc036d904877 一.Hibernate是JDBC的轻量级的对象封装,它是一个独立的对象 ...