Lucene TF-IDF 相关性算分公式(转)
Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序
TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则
- 某个词或短语在一篇文章中出现的次数越多,越相关
- 整个文档集合中包含某个词的文档数量越少,这个词越重要
所以一个term的TF-IDF相关性等于 TF * IDF
这两个规则非常简单,这就是TF-IDF的核心规则,第二个的规则其实有缺陷的,他单纯地认为文本频率小的单词就越重要,文本频率大的单词就越无用,显然这并不是完全正确的。并不能有效地反映单词的重要程度和特征词的分布情况,比如说搜索web文档的时候,处于HTML不同结构的特征词中对文章内容的反映程度不同,应该有不同的权重
TF-IDF的优点是算法简单,运算速度很快
Lucene为了提高可编程行,在上述规则做了一些扩充,就是加入一些编程接口,对不同的查询做了权重归一化处理,但是核心公式还是TF * IDF
Lucene算法公式如下
score(q,d) = coord(q,d) · queryNorm(q) · ∑ ( tf(t in d) · idf(t)2 · t.getBoost() · norm(t,d) )
- tf(t in d ), = frequency½
- idf(t) = 1 +log(文档总数/(包含t的文档数+1))
- coord(q,d) 评分因子,。越多的查询项在一个文档中,说明些文档的匹配程序越高,比如说,查询"A B C",那么同时包含A/B/C3个词的文档 是3分,只包含A/B的文档是2分,coord可以在query中关掉的
- queryNorm(q)查询的标准查询,使不同查询之间可以比较
- t.getBoost() 和 norm(t,d) 都是提供的可编程接口,可以调整 field/文档/query项 的权重
各种编程插口显得很麻烦,可以不使用,所以我们可以把Lucence的算分公式进行简化
score(q,d) = coord(q,d) · ∑ ( tf(t in d) · idf(t)2 )
结论
- TF-IDF 算法是以 term为基础的,term就是最小的分词单元,这说明分词算法对基于统计的ranking无比重要,如果你对中文用单字切分,那么就会损失所有的语义相关性,这个时候 搜索只是当做一种高效的全文匹配方法
- 按照规则1
某个词或短语在一篇文章中出现的次数越多,越相关一定要去除掉stop word,因为这些词出现的频率太高了,也就是TF的值很大,会严重干扰算分结果 - TF和IDF在生成索引的时候,就会计算出来: TF会和DocID保存在一起(docIDs的一部分),而IDF= 总文档数 / 当前term拥有的docIDs 长度
本文地址: http://lutaf.com/210.htm 鲁塔弗原创文章,欢迎转载,请附带原文链接
Lucene TF-IDF 相关性算分公式(转)的更多相关文章
- Solr相似度算法一:Lucene TF-IDF 相关性算分公式
Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很 ...
- Lucene TF-IDF 相关性算分公式
转自: http://lutaf.com/210.htm Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF- ...
- ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分
一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...
- 关于使用Filter降低Lucene tf idf打分计算的调研
将query改成filter,lucene中有个QueryWrapperFilter性能比较差,所以基本上都须要自己写filter.包含TermFilter,ExactPhraseFilter,Con ...
- Elasticsearch从入门到放弃:浅谈算分
今天来聊一个 Elasticsearch 的另一个关键概念--相关性算分.在查询 API 的结果中,我们经常会看到 _score 这个字段,它就是用来表示相关性算分的字段,而相关性就是描述一个文档和查 ...
- 影响ES相关度算分的因素
相关性算分 指文档与查询语句间的相关度,通过倒排索引可以获取与查询语句相匹配的文档列表 如何将最符合用户查询需求的文档放到前列呢? 本质问题是一个排序的问题,排序的依据是相关性算分,确定倒排索引哪 ...
- tf idf公式及sklearn中TfidfVectorizer
在文本挖掘预处理之向量化与Hash Trick中我们讲到在文本挖掘的预处理中,向量化之后一般都伴随着TF-IDF的处理,那么什么是TF-IDF,为什么一般我们要加这一步预处理呢?这里就对TF-IDF的 ...
- TF/IDF(term frequency/inverse document frequency)
TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...
- 基于TF/IDF的聚类算法原理
一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...
随机推荐
- Fixed Responsive Nav – 响应式的单页网站导航插件
Fixed Responsive Nav 是一个响应式的,固定的,触摸友好的单页网站导航插件,响应式导航,流畅的动画滚动.该项目采用渐进增强构建,支持工作在 IE6 及以上版本的浏览器. 你可以给导航 ...
- JS高程1.javascript简介
1.javaScript诞生于1995年,最开始是为了处理以前由服务器端语言负责的一些诸如验证的操作. 2.一些名词: ECMA:European Computer Manufacturers Ass ...
- SPC2014 :“FOSL”不是替代InfoPath,只是另外一种创建表单的方式
今天在SPC2014微软宣布他们技术路线图.其实,没有足够证据替代InfoPath,只是另外的一种尝试 - FOSL(对SharePoint列表表单). FOSL使用相同的引擎,用于创建表单的访问服务 ...
- Android HTTP实例 使用GET方法和POST方法发送请求
Android HTTP实例 使用GET方法和POST方法发送请求 Web程序:使用GET和POST方法发送请求 首先利用MyEclispe+Tomcat写好一个Web程序,实现的功能就是提交用户信息 ...
- App 即时通讯 SDK
1.网易云信 http://netease.im/ 2.环信 http://www.easemob.com/customer/im 3.融云 http://www.rongcloud.cn/ 4.极光 ...
- Android - ADB 的使用
一.什么是ADB? 1.ADB全称Android Debug Bridge, 是android sdk里的一个工具,用这个工具可以直接操作管理android模拟器或者真实的andriod设备 2.AD ...
- 深入.net(多态二)
代码优化技术: 通过“继承”技术,实现代码的复用,减少代码的编写量. 因为子类继承父类,拥有了父类所有对外公开“属性”和“方法”,所以,在系统中,完全可以由子类替代父类(里氏替换原则)!在替代的过程中 ...
- web service上传参数代码实例
web service上传参数代码实例 这次做的项目用到webservice比较多,最开始在网上看的参考dome,发现都不行,后来发现安卓4.0以后有很大的不同,在做传参时,有些东西需要注意: 第一, ...
- Android中过场动画
overridePendingTransition(R.anim.slide_in_right,R.anim.slide_out_left); 第一参数为进入的动画 第二参数为退出的动画 进入的动画 ...
- [Android] android .keystore文件转x509pem工具
.keystore是android的签名文件,最近在做联通联运的时候,发现他们需要上传x509pem格式的文件来签名所以就研究了一下如何转化 方法一:使用openssl的方法 http://blog. ...