NOIP2010提高组乌龟棋 -SilverN
题目背景
小明过生日的时候,爸爸送给他一副乌龟棋当作礼物。
题目描述
乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数)。棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点。
乌龟棋中M张爬行卡片,分成4种不同的类型(M张卡片中不一定包含所有4种类型的卡片,见样例),每种类型的卡片上分别标有1、2、3、4四个数字之一,表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数。游戏中,玩家每次需要从所有的爬行卡片中选择一张之前没有使用过的爬行卡片,控制乌龟棋子前进相应的格子数,每张卡片只能使用一次。
游戏中,乌龟棋子自动获得起点格子的分数,并且在后续的爬行中每到达一个格子,就得到该格子相应的分数。玩家最终游戏得分就是乌龟棋子从起点到终点过程中到过的所有格子的分数总和。
很明显,用不同的爬行卡片使用顺序会使得最终游戏的得分不同,小明想要找到一种卡片使用顺序使得最终游戏得分最多。
现在,告诉你棋盘上每个格子的分数和所有的爬行卡片,你能告诉小明,他最多能得到多少分吗?
输入输出格式
输入格式:
输入文件的每行中两个数之间用一个空格隔开。
第1行2个正整数N和M,分别表示棋盘格子数和爬行卡片数。
第2行N个非负整数,a1a2……aN,其中ai表示棋盘第i个格子上的分数。
第3行M个整数,b1b2……bM,表示M张爬行卡片上的数字。
输入数据保证到达终点时刚好用光M张爬行卡片。
输出格式:
输出只有1行,1个整数,表示小明最多能得到的分数。
输入输出样例
9 5
6 10 14 2 8 8 18 5 17
1 3 1 2 1
73
说明
每个测试点1s
小明使用爬行卡片顺序为1,1,3,1,2,得到的分数为6+10+14+8+18+17=73。注意,由于起点是1,所以自动获得第1格的分数6。
对于30%的数据有1≤N≤30,1≤M≤12。
对于50%的数据有1≤N≤120,1≤M≤50,且4种爬行卡片,每种卡片的张数不会超过20。
对于100%的数据有1≤N≤350,1≤M≤120,且4种爬行卡片,每种卡片的张数不会超过40;0≤ai≤100,1≤i≤N;1≤bi≤4,1≤i≤M。
动态规划可解
需要规划的五个量:四种卡分别使用的数量,目前所处的点
当前所处位置可以用卡的使用数量表示,所以实际只需四维
/*NOIP2010提高组乌龟棋 SilverN*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int f[][][][];
int s[];//得分
int p[];//卡数量
int m,n;
int main(){
scanf("%d%d",&n,&m);
int i,j,x;
for(i=;i<=n;i++)scanf("%d",&s[i]);
for(j=;j<=m;j++){//计算卡数量
scanf("%d",&x);
p[x]++;
}
int k,h;
//枚举卡的使用数量即可,注意可以不使用卡
for(i=;i<=p[];i++)
for(j=;j<=p[];j++)
for(k=;k<=p[];k++)
for(h=;h<=p[];h++){
int dis=i+*j+*k+*h+;
if(i> && f[i-][j][k][h]>f[i][j][k][h] )f[i][j][k][h]=f[i-][j][k][h];
if(j> && f[i][j-][k][h]>f[i][j][k][h] )f[i][j][k][h]=f[i][j-][k][h];
if(k> && f[i][j][k-][h]>f[i][j][k][h] )f[i][j][k][h]=f[i][j][k-][h];
if(h> && f[i][j][k][h-]>f[i][j][k][h] )f[i][j][k][h]=f[i][j][k][h-];
f[i][j][k][h]+=s[dis];
}
printf("%d",f[p[]][p[]][p[]][p[]]);//数据保证所有卡用完以后到终点
return ;
}
NOIP2010提高组乌龟棋 -SilverN的更多相关文章
- 洛谷 1541 NOIp2010提高组 乌龟棋
[题解] 很容易想到这是一个DP,f[i][j][k][l]表示4种卡片分别用了多少张,那么转移方程就是f[i][j][k][l]=Max(f[i-1][j][k][l],f[i][j-1][k][l ...
- NOIP2010提高组 关押罪犯 -SilverN
(洛谷P1525) 题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨气值”( ...
- 洛谷 P1541 乌龟棋 & [NOIP2010提高组](dp)
传送门 解题思路 一道裸的dp. 用dp[i][j][k][kk]表示用i个1步,j个2步,k个3步,kk个4步所获得的最大价值,然后状态转移方程就要分情况讨论了(详见代码) 然后就是一开始统计一下几 ...
- noip2010提高组题解
NOIP2010提高组题解 T1:机器翻译 题目大意:顺序输入n个数,有一个队列容量为m,遇到未出现元素入队,求入队次数. AC做法:直接开1000的队列模拟过程. T2:乌龟棋 题目大意:有长度为n ...
- NOIP2010提高组真题部分整理(没有关押罪犯)
目录 \(NOIP2010\)提高组真题部分整理 \(T1\)机器翻译: 题目背景: 题目描述: 输入输出格式: 输入输出样例: 说明: 题解: 代码: \(T2\)乌龟棋 题目背景: 题目描述: 输 ...
- [NOIP2010] 提高组 洛谷P1525 关押罪犯
刚才做并查集想到了这道以前做的题,干脆一并放上来 题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可 ...
- 洛谷 P1525 关押罪犯 & [NOIP2010提高组](贪心,种类并查集)
传送门 解题思路 很显然,为了让最大值最小,肯定就是从大到小枚举,让他们分在两个监狱中,第一个不符合的就是答案. 怎样判断是否在一个监狱中呢? 很显然,就是用种类并查集. 种类并查集的讲解——团伙(很 ...
- [NOIP2010] 提高组 洛谷P1541 乌龟棋
题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...
- Noip2010提高组总结
将Noip2010重新做了一遍,第一遍做下来居然只有290分,比当年浙江的一等线低了20分,因为各种坏习惯丢掉了许多分数,Noip时需要特别注意! T1:机器翻译 第一题直接暴力,内存足够所以不用循环 ...
随机推荐
- Devrama Slider - 支持任意 HTML 的内容滑块
Devrama Slider 是一个图片滑块,支持很多特色功能.除了支持图片滑动,其它的 HTML 内容也支持.主要特色:响应式.图片预加载.图片延迟加载.进度条.自定义导航栏和控制按钮等等. 在线演 ...
- Hashslider – 带有 Hash 标签功能的 jQuery 内容滑块
Hashslider 实现了常见的 jQuery 滑块的功能,特别之处在于给 URL 加上了标签,因此你能够连接到滑块的某块内容.滑块的内容也可以从外部的 HTML 文件获取. 您可能感兴趣的相关文章 ...
- Typecast 免费了!献给设计师们的礼物
TypeCast 让你可以从 Fonts.com.TypeKit.FontDeck 和 Google 这些字体供应和商选择字体,而且能非常方便的比较这些字体使用效果.如果你想获得用户对这些字体效果的反 ...
- 【初探移动前端开发03】jQuery Mobile(上)
前言 到目前为止,我打了几天酱油了,这几天落实了工作,并且看了一部电视连续剧(陈道明-手机),我很少看连续剧了,但是手机质量很高啊,各位可以看看. 我们今天先学习一下jquery mobile的基础知 ...
- myeclipse 2015 CI 16发布【附下载】
2015升级版再次来袭! 更新日志: Slack Integration 新版本集成了Slack,你只需要注册一个Slack帐号然后就可以发送和接收代码片段.你甚至不需要登录Slack就可以直接在Ec ...
- 高性能JS笔记4——算法和流程控制
一.循环 for.while.do while三种循环的性能都没有多大区别.foreach 的性能较其他三种差 . 既然循环没有多大区别,注意循环内的代码控制. 减少迭代次数. 减少迭代工作量. 推荐 ...
- WCF分分钟入门
近来学习wcf,总结了一下入门的经验,小白的入门篇,也方便以后复习,省的去查质料. 第一步:创建wcf程序,程序初始化有一个接口和一个实现类写个简单的返回方法就可以了: 第二步:创建一个宿主,也就是服 ...
- xmpp整理笔记:xmppFramework框架的导入和介绍
一个将要开发xmpp的项目,建议在项目刚创建就导入框架,这样可以避免一些自己操作失误造成不必要的损失. xmpp中最常用的框架就是 xmppFrameWork 往期回顾: xmpp整理笔记:环境的快速 ...
- Git 分支管理策略
分支管理策略 下面我们来说一下一般企业中开发一个项目的分支策略: 主分支 master 开发分支 develop 功能分支 feature 预发布分支 release bug 分支 fixbug 其 ...
- 干货之运用CALayer创建星级评分组件(五角星)
本篇记录星级评分组件的创建过程以及CALayer的运用. 为了实现一个星级评分的组件,使用了CALayer,涉及到mask.CGPathRef.UIBezierPath.动画和一个计算多角星关键节点的 ...