Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.

Note:
You may assume the interval's end point is always bigger than its start point.
Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ] Output: 1 Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [ [1,2], [1,2], [1,2] ] Output: 2 Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [ [1,2], [2,3] ] Output: 0 Explanation: You don't need to remove any of the intervals since they're already non-overlapping.

Actually, the problem is the same as "Given a collection of intervals, find the maximum number of intervals that are non-overlapping." (the classic Greedy problem: Interval Scheduling). With the solution to that problem, guess how do we get the minimum number of intervals to remove? : )

Sorting Interval.end in ascending order is O(nlogn), then traverse intervals array to get the maximum number of non-overlapping intervals is O(n). Total is O(nlogn).

开始的时候想岔了,以为是要求同一时刻overlap的最多interval数,但仔细想一想就发现不对,应该是non-overlap的interval的最大数目

1. Best solution: sorted by interval end

case 1 add current interval as another non-overlapping interval, case 2 and case 3 all get rid of the current interval

 /**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
public class Solution {
public int eraseOverlapIntervals(Interval[] intervals) {
if (intervals.length == 0) return 0;
int nonOverlap = 1;
int seq = 0;
Arrays.sort(intervals, new Comparator<Interval>() {
public int compare(Interval i1, Interval i2) {
return i1.end - i2.end;
}
});
for (int i=1; i<intervals.length; i++) {
if (intervals[i].start >= intervals[seq].end) {
seq = i;
nonOverlap++;
}
}
return intervals.length - nonOverlap;
}
}

Comparator can also be rewritten as

 Arrays.sort(intervals, (i1, i2) -> Integer.compare(i1[1], i2[1]));

2. Alternatives(not the best): sort by interval start

case 1 add current interval as another non-overlapping interval, case 2 update the previous non-overlapping interval with the current one, and case 3 get rid of the current interval. So more cases need to be processed than sorted by interval end

 class Solution {
public int eraseOverlapIntervals(int[][] intervals) {
if (intervals.length < 1) return 0;
int seq = 0;
int nonOverlap = 1; Arrays.sort(intervals, (i1, i2) -> Integer.compare(i1[0], i2[0])); for (int i = 0; i < intervals.length; i ++) {
if (intervals[i][0] >= intervals[seq][1]) {
seq = i;
nonOverlap ++;
}
else if (intervals[i][1] <= intervals[seq][1]) {
seq = i;
}
} return intervals.length - nonOverlap;
}
}

Leetcode: Non-overlapping Intervals的更多相关文章

  1. LeetCode 56. Merge Intervals (合并区间)

    Given a collection of intervals, merge all overlapping intervals. For example,Given [1,3],[2,6],[8,1 ...

  2. [Leetcode Week2]Merge Intervals

    Merge Intervals题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/merge-intervals/description/ Descript ...

  3. 【leetcode】Merge Intervals

    Merge Intervals Given a collection of intervals, merge all overlapping intervals. For example,Given  ...

  4. 【leetcode】Merge Intervals(hard)

    Given a collection of intervals, merge all overlapping intervals. For example,Given [1,3],[2,6],[8,1 ...

  5. Java for LeetCode 056 Merge Intervals

    Given a collection of intervals, merge all overlapping intervals. For example, Given [1,3],[2,6],[8, ...

  6. [LeetCode] 56. Merge Intervals 解题思路

    Given a collection of intervals, merge all overlapping intervals. For example,Given [1,3],[2,6],[8,1 ...

  7. leetcode[55] Merge Intervals

    题目:给定一连串的区间,要求输出不重叠的区间. Given a collection of intervals, merge all overlapping intervals. For exampl ...

  8. [LeetCode] 56 - Merge Intervals 合并区间

    Given a collection of intervals, merge all overlapping intervals. For example,Given [1,3],[2,6],[8,1 ...

  9. [leetcode]56. Merge Intervals归并区间

    Given a collection of intervals, merge all overlapping intervals. Example 1: Input: [[1,3],[2,6],[8, ...

  10. 【leetcode】 Merge Intervals

    Merge Intervals Given a collection of intervals, merge all overlapping intervals. For example,Given  ...

随机推荐

  1. HDU 4020 Ads Proposal

    题目链接 排排序,找找做题的感觉... 对了,longlong用C++ 错了几次,我也是linux选手了.... #include <iostream> #include <cstd ...

  2. App如何适应 iPhone 5s/6/6 Plus 三种屏幕的尺寸?

    来自//www.cocoachina.com/ 初代 iPhone 2007 年,初代 iPhone 发布,屏幕的宽高是 320 x 480 像素.下文也是按照宽度,高度的顺序排列.这个分辨率一直到 ...

  3. List<string>中的泛型委托

    我们先看List<T>.Sort().其定义是:public void Sort( Comparison<T> comparison ) 其要求传入的参数是Comparison ...

  4. OSG+VS2010+win7环境搭建---OsgEarth编译

    OSG+VS2010+win7环境搭建---OsgEarth编译 转:http://www.cnblogs.com/hnfxs/p/3161261.html Win7下 osg+vs2010环境搭建 ...

  5. find命令详解

    find命令详解   来源: ChinaUnix博客 日期: 2008.07.25 16:04 (共有条评论) 我要评论   [url=http://www.sudu.cn/web/host.php] ...

  6. 类库,委托,is和as运算符,泛型集合

    类库:其实就是一堆类文件,只不过用户看不到这些类的源代码,保密性好. 优点:保密性好缺点:如果这个方法不好用,使用者无法自己去更改它. 类文件是.cs    类库是.dll 新建项目为类库,在debu ...

  7. Git分布式项目管理

          Git简介 Git是什么? Git和SVN一样都是一种高效的管理代码的系统. Git是目前世界上最先进的分布式版本控制系统(没有之一). 创建版本库 什么是版本库呢?版本库又名仓库,英文名 ...

  8. oracle initialization or shutdown in progress问题解决步骤

        今天像往常一样打开电脑,启动plsql工具连接数据库,但是尽然连接不了,报了“oracle initialization or shutdown in progress”的提示信息,从操作系统 ...

  9. dede数据库类使用方法 $dsql

    dedecms的数据库操作类,非常实用,在二次开发中尤其重要,这个数据库操作类说明算是奉献给大家的小礼物了. 引入common.inc.php文件 require_once (dirname(__FI ...

  10. html本地服务器

    html本地服务器 http://files.cnblogs.com/files/douxuyao/Aws.rar