原文链接:http://www.ruby-doc.org/core-1.9.3/Regexp.html

Regexp

A Regexp holds a regular expression, used to match a pattern against strings. Regexps are created using the /.../ and %r{...} literals, and by the Regexp::new constructor.

Regular expressions (regexps) are patterns which describe the contents of a string. They’re used for testing whether a string contains a given pattern, or extracting the portions that match. They are created with the /pat/ and %r{pat} literals or the Regexp.new constructor.

A regexp is usually delimited with forward slashes (/). For example:

/hay/ =~ 'haystack'   #=> 0
/y/.match('haystack') #=> #<MatchData "y">

If a string contains the pattern it is said to match. A literal string matches itself.

# 'haystack' does not contain the pattern 'needle', so doesn't match.
/needle/.match('haystack') #=> nil
# 'haystack' does contain the pattern 'hay', so it matches
/hay/.match('haystack') #=> #<MatchData "hay">

Specifically, /st/ requires that the string contains the letter s followed by the letter t, so it matches haystack, also.

Metacharacters and Escapes

The following are metacharacters (, ), [, ], {, }, ., ?, +, *. They have a specific meaning when appearing in a pattern. To match them literally they must be backslash-escaped. To match a backslash literally backslash-escape that: <tt>\\</tt>.

/1 \+ 2 = 3\?/.match('Does 1 + 2 = 3?') #=> #<MatchData "1 + 2 = 3?">

Patterns behave like double-quoted strings so can contain the same backslash escapes.

/\s\u{6771 4eac 90fd}/.match("Go to 東京都")
#=> #<MatchData " 東京都">

Arbitrary Ruby expressions can be embedded into patterns with the #{...} construct.

place = "東京都"
/#{place}/.match("Go to 東京都")
#=> #<MatchData "東京都">

Character Classes

A character class is delimited with square brackets ([, ]) and lists characters that may appear at that point in the match. /[ab]/ means a or b, as opposed to /ab/ which means a followed by b.

/W[aeiou]rd/.match("Word") #=> #<MatchData "Word">

Within a character class the hyphen (-) is a metacharacter denoting an inclusive range of characters. [abcd] is equivalent to [a-d]. A range can be followed by another range, so [abcdwxyz] is equivalent to [a-dw-z]. The order in which ranges or individual characters appear inside a character class is irrelevant.

/[0-9a-f]/.match('9f') #=> #<MatchData "9">
/[9f]/.match('9f') #=> #<MatchData "9">

If the first character of a character class is a caret (^) the class is inverted: it matches any character except those named.

/[^a-eg-z]/.match('f') #=> #<MatchData "f">

A character class may contain another character class. By itself this isn’t useful because [a-z[0-9]] describes the same set as [a-z0-9]. However, character classes also support the && operator which performs set intersection on its arguments. The two can be combined as follows:

/[a-w&&[^c-g]z]/ # ([a-w] AND ([^c-g] OR z))
# This is equivalent to:
/[abh-w]/

The following metacharacters also behave like character classes:

  • /./ - Any character except a newline.

  • /./m - Any character (the m modifier enables multiline mode)

  • /\w/ - A word character ([a-zA-Z0-9_])

  • /\W/ - A non-word character ([^a-zA-Z0-9_])

  • /\d/ - A digit character ([0-9])

  • /\D/ - A non-digit character ([^0-9])

  • /\h/ - A hexdigit character ([0-9a-fA-F])

  • /\H/ - A non-hexdigit character ([^0-9a-fA-F])

  • /\s/ - A whitespace character: /[ \t\r\n\f]/

  • /\S/ - A non-whitespace character: /[^ \t\r\n\f]/

POSIX bracket expressions are also similar to character classes. They provide a portable alternative to the above, with the added benefit that they encompass non-ASCII characters. For instance, /\d/ matches only the ASCII decimal digits (0-9); whereas /[[:digit:]]/ matches any character in the Unicode Nd category.

  • /[[:alnum:]]/ - Alphabetic and numeric character

  • /[[:alpha:]]/ - Alphabetic character

  • /[[:blank:]]/ - Space or tab

  • /[[:cntrl:]]/ - Control character

  • /[[:digit:]]/ - Digit

  • /[[:graph:]]/ - Non-blank character (excludes spaces, control characters, and similar)

  • /[[:lower:]]/ - Lowercase alphabetical character

  • /[[:print:]]/ - Like [:graph:], but includes the space character

  • /[[:punct:]]/ - Punctuation character

  • /[[:space:]]/ - Whitespace character ([:blank:], newline,

    carriage return, etc.)
  • /[[:upper:]]/ - Uppercase alphabetical

  • /[[:xdigit:]]/ - Digit allowed in a hexadecimal number (i.e., 0-9a-fA-F)

Ruby also supports the following non-POSIX character classes:

  • /[[:word:]]/ - A character in one of the following Unicode general categories Letter, Mark, Number, Connector_Punctuation

  • /[[:ascii:]]/ - A character in the ASCII character set

    # U+06F2 is "EXTENDED ARABIC-INDIC DIGIT TWO"
    /[[:digit:]]/.match("\u06F2") #=> #<MatchData "\u{06F2}">
    /[[:upper:]][[:lower:]]/.match("Hello") #=> #<MatchData "He">
    /[[:xdigit:]][[:xdigit:]]/.match("A6") #=> #<MatchData "A6">

Repetition

The constructs described so far match a single character. They can be followed by a repetition metacharacter to specify how many times they need to occur. Such metacharacters are called quantifiers.

  • * - Zero or more times

  • + - One or more times

  • ? - Zero or one times (optional)

  • {n} - Exactly n times

  • {n,} - n or more times

  • {,m} - m or less times

  • {n,m} - At least n and at most m times

    # At least one uppercase character ('H'), at least one lowercase
    # character ('e'), two 'l' characters, then one 'o'
    "Hello".match(/[[:upper:]]+[[:lower:]]+l{2}o/) #=> #<MatchData "Hello">

Repetition is greedy by default: as many occurrences as possible are matched while still allowing the overall match to succeed. By contrast, lazy matching makes the minimal amount of matches necessary for overall success. A greedy metacharacter can be made lazy by following it with ?.

# Both patterns below match the string. The first uses a greedy
# quantifier so '.+' matches '<a><b>'; the second uses a lazy
# quantifier so '.+?' matches '<a>'.
/<.+>/.match("<a><b>") #=> #<MatchData "<a><b>">
/<.+?>/.match("<a><b>") #=> #<MatchData "<a>">

A quantifier followed by + matches possessively: once it has matched it does not backtrack. They behave like greedy quantifiers, but having matched they refuse to “give up” their match even if this jeopardises the overall match.

Capturing

Parentheses can be used for capturing. The text enclosed by the n<sup>th</sup> group of parentheses can be subsequently referred to with n. Within a pattern use the backreference </tt>n; outside of the pattern use <tt>MatchData[n].

# 'at' is captured by the first group of parentheses, then referred to
# later with \1
/[csh](..) [csh]\1 in/.match("The cat sat in the hat")
#=> #<MatchData "cat sat in" 1:"at">
# Regexp#match returns a MatchData object which makes the captured
# text available with its #[] method.
/[csh](..) [csh]\1 in/.match("The cat sat in the hat")[1] #=> 'at'

Capture groups can be referred to by name when defined with the (?<name>) or (?'name') constructs.

/\$(?<dollars>\d+)\.(?<cents>\d+)/.match("$3.67")
=> #<MatchData "$3.67" dollars:"3" cents:"67">
/\$(?<dollars>\d+)\.(?<cents>\d+)/.match("$3.67")[:dollars] #=> "3"

Named groups can be backreferenced with \k<name>, where name is the group name.

/(?<vowel>[aeiou]).\k<vowel>.\k<vowel>/.match('ototomy')
#=> #<MatchData "ototo" vowel:"o">

Note: A regexp can't use named backreferences and numbered backreferences simultaneously.

When named capture groups are used with a literal regexp on the left-hand side of an expression and the =~ operator, the captured text is also assigned to local variables with corresponding names.

/\$(?<dollars>\d+)\.(?<cents>\d+)/ =~ "$3.67" #=> 0
dollars #=> "3"

Grouping

Parentheses also group the terms they enclose, allowing them to be quantified as one atomic whole.

# The pattern below matches a vowel followed by 2 word characters:
# 'aen'
/[aeiou]\w{2}/.match("Caenorhabditis elegans") #=> #<MatchData "aen">
# Whereas the following pattern matches a vowel followed by a word
# character, twice, i.e. <tt>[aeiou]\w[aeiou]\w</tt>: 'enor'.
/([aeiou]\w){2}/.match("Caenorhabditis elegans")
#=> #<MatchData "enor" 1:"or">

The (?:) construct provides grouping without capturing. That is, it combines the terms it contains into an atomic whole without creating a backreference. This benefits performance at the slight expense of readabilty.

# The group of parentheses captures 'n' and the second 'ti'. The
# second group is referred to later with the backreference \2
/I(n)ves(ti)ga\2ons/.match("Investigations")
#=> #<MatchData "Investigations" 1:"n" 2:"ti">
# The first group of parentheses is now made non-capturing with '?:',
# so it still matches 'n', but doesn't create the backreference. Thus,
# the backreference \1 now refers to 'ti'.
/I(?:n)ves(ti)ga\1ons/.match("Investigations")
#=> #<MatchData "Investigations" 1:"ti">

Atomic Grouping

Grouping can be made atomic with (?>pat). This causes the subexpression pat to be matched independently of the rest of the expression such that what it matches becomes fixed for the remainder of the match, unless the entire subexpression must be abandoned and subsequently revisited. In this way pat is treated as a non-divisible whole. Atomic grouping is typically used to optimise patterns so as to prevent the regular expression engine from backtracking needlesly.

# The <tt>"</tt> in the pattern below matches the first character of
# the string, then <tt>.*</tt> matches <i>Quote"</i>. This causes the
# overall match to fail, so the text matched by <tt>.*</tt> is
# backtracked by one position, which leaves the final character of the
# string available to match <tt>"</tt>
/".*"/.match('"Quote"') #=> #<MatchData "\"Quote\"">
# If <tt>.*</tt> is grouped atomically, it refuses to backtrack
# <i>Quote"</i>, even though this means that the overall match fails
/"(?>.*)"/.match('"Quote"') #=> nil

Subexpression Calls

The \g<name> syntax matches the previous subexpression named name, which can be a group name or number, again. This differs from backreferences in that it re-executes the group rather than simply trying to re-match the same text.

# Matches a <i>(</i> character and assigns it to the <tt>paren</tt>
# group, tries to call that the <tt>paren</tt> sub-expression again
# but fails, then matches a literal <i>)</i>.
/\A(?<paren>\(\g<paren>*\))*\z/ =~ '()' /\A(?<paren>\(\g<paren>*\))*\z/ =~ '(())' #=> 0
# ^1
# ^2
# ^3
# ^4
# ^5
# ^6
# ^7
# ^8
# ^9
# ^10
  1. Matches at the beginning of the string, i.e. before the first character.

  2. Enters a named capture group called paren

  3. Matches a literal (, the first character in the string

  4. Calls the paren group again, i.e. recurses back to the second step

  5. Re-enters the paren group

  6. Matches a literal (, the second character in the string

  7. Try to call paren a third time, but fail because doing so would prevent an overall successful match

  8. Match a literal ), the third character in the string. Marks the end of the second recursive call

  9. Match a literal ), the fourth character in the string

  10. Match the end of the string

Alternation

The vertical bar metacharacter (|) combines two expressions into a single one that matches either of the expressions. Each expression is an alternative.

/\w(and|or)\w/.match("Feliformia") #=> #<MatchData "form" 1:"or">
/\w(and|or)\w/.match("furandi") #=> #<MatchData "randi" 1:"and">
/\w(and|or)\w/.match("dissemblance") #=> nil

Character Properties

The \p{} construct matches characters with the named property, much like POSIX bracket classes.

  • /\p{Alnum}/ - Alphabetic and numeric character

  • /\p{Alpha}/ - Alphabetic character

  • /\p{Blank}/ - Space or tab

  • /\p{Cntrl}/ - Control character

  • /\p{Digit}/ - Digit

  • /\p{Graph}/ - Non-blank character (excludes spaces, control characters, and similar)

  • /\p{Lower}/ - Lowercase alphabetical character

  • /\p{Print}/ - Like \p{Graph}, but includes the space character

  • /\p{Punct}/ - Punctuation character

  • /\p{Space}/ - Whitespace character ([:blank:], newline, carriage return, etc.)

  • /\p{Upper}/ - Uppercase alphabetical

  • /\p{XDigit}/ - Digit allowed in a hexadecimal number (i.e., 0-9a-fA-F)

  • /\p{Word}/ - A member of one of the following Unicode general category Letter, Mark, Number, Connector_Punctuation

  • /\p{ASCII}/ - A character in the ASCII character set

  • /\p{Any}/ - Any Unicode character (including unassigned characters)

  • /\p{Assigned}/ - An assigned character

A Unicode character’s General Category value can also be matched with \p{Ab} where Ab is the category’s abbreviation as described below:

  • /\p{L}/ - 'Letter'

  • /\p{Ll}/ - 'Letter: Lowercase'

  • /\p{Lm}/ - 'Letter: Mark'

  • /\p{Lo}/ - 'Letter: Other'

  • /\p{Lt}/ - 'Letter: Titlecase'

  • /\p{Lu}/ - 'Letter: Uppercase

  • /\p{Lo}/ - 'Letter: Other'

  • /\p{M}/ - 'Mark'

  • /\p{Mn}/ - 'Mark: Nonspacing'

  • /\p{Mc}/ - 'Mark: Spacing Combining'

  • /\p{Me}/ - 'Mark: Enclosing'

  • /\p{N}/ - 'Number'

  • /\p{Nd}/ - 'Number: Decimal Digit'

  • /\p{Nl}/ - 'Number: Letter'

  • /\p{No}/ - 'Number: Other'

  • /\p{P}/ - 'Punctuation'

  • /\p{Pc}/ - 'Punctuation: Connector'

  • /\p{Pd}/ - 'Punctuation: Dash'

  • /\p{Ps}/ - 'Punctuation: Open'

  • /\p{Pe}/ - 'Punctuation: Close'

  • /\p{Pi}/ - 'Punctuation: Initial Quote'

  • /\p{Pf}/ - 'Punctuation: Final Quote'

  • /\p{Po}/ - 'Punctuation: Other'

  • /\p{S}/ - 'Symbol'

  • /\p{Sm}/ - 'Symbol: Math'

  • /\p{Sc}/ - 'Symbol: Currency'

  • /\p{Sc}/ - 'Symbol: Currency'

  • /\p{Sk}/ - 'Symbol: Modifier'

  • /\p{So}/ - 'Symbol: Other'

  • /\p{Z}/ - 'Separator'

  • /\p{Zs}/ - 'Separator: Space'

  • /\p{Zl}/ - 'Separator: Line'

  • /\p{Zp}/ - 'Separator: Paragraph'

  • /\p{C}/ - 'Other'

  • /\p{Cc}/ - 'Other: Control'

  • /\p{Cf}/ - 'Other: Format'

  • /\p{Cn}/ - 'Other: Not Assigned'

  • /\p{Co}/ - 'Other: Private Use'

  • /\p{Cs}/ - 'Other: Surrogate'

Lastly, \p{} matches a character’s Unicode script. The following scripts are supported: Arabic, Armenian, Balinese, Bengali, Bopomofo, Braille, Buginese, Buhid, Canadian_Aboriginal, Carian, Cham, Cherokee, Common, Coptic, Cuneiform, Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana, Inherited, Kannada, Katakana, Kayah_Li, Kharoshthi, Khmer, Lao, Latin, Lepcha, Limbu, Linear_B, Lycian, Lydian, Malayalam, Mongolian, Myanmar, New_Tai_Lue, Nko, Ogham, Ol_Chiki, Old_Italic, Old_Persian, Oriya, Osmanya, Phags_Pa, Phoenician, Rejang, Runic, Saurashtra, Shavian, Sinhala, Sundanese, Syloti_Nagri, Syriac, Tagalog, Tagbanwa, Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Vai, and Yi.

# Unicode codepoint U+06E9 is named "ARABIC PLACE OF SAJDAH" and
# belongs to the Arabic script.
/\p{Arabic}/.match("\u06E9") #=> #<MatchData "\u06E9">

All character properties can be inverted by prefixing their name with a caret (^).

# Letter 'A' is not in the Unicode Ll (Letter; Lowercase) category, so
# this match succeeds
/\p{^Ll}/.match("A") #=> #<MatchData "A">

Anchors

Anchors are metacharacter that match the zero-width positions between characters, anchoring the match to a specific position.

  • ^ - Matches beginning of line

  • $ - Matches end of line

  • \A - Matches beginning of string.

  • \Z - Matches end of string. If string ends with a newline, it matches just before newline

  • \z - Matches end of string

  • \G - Matches point where last match finished

  • \b - Matches word boundaries when outside brackets; backspace (0x08) when inside brackets

  • \B - Matches non-word boundaries

  • (?=pat) - Positive lookahead assertion: ensures that the following characters match pat, but doesn't include those characters in the matched text

  • (?!pat) - Negative lookahead assertion: ensures that the following characters do not match pat, but doesn't include those characters in the matched text

  • (?<=pat) - Positive lookbehind assertion: ensures that the preceding characters match pat, but doesn't include those characters in the matched text

  • (?<!pat) - Negative lookbehind assertion: ensures that the preceding characters do not match pat, but doesn't include those characters in the matched text

    # If a pattern isn't anchored it can begin at any point in the string
    /real/.match("surrealist") #=> #<MatchData "real">
    # Anchoring the pattern to the beginning of the string forces the
    # match to start there. 'real' doesn't occur at the beginning of the
    # string, so now the match fails
    /\Areal/.match("surrealist") #=> nil
    # The match below fails because although 'Demand' contains 'and', the
    pattern does not occur at a word boundary.
    /\band/.match("Demand")
    # Whereas in the following example 'and' has been anchored to a
    # non-word boundary so instead of matching the first 'and' it matches
    # from the fourth letter of 'demand' instead
    /\Band.+/.match("Supply and demand curve") #=> #<MatchData "and curve">
    # The pattern below uses positive lookahead and positive lookbehind to
    # match text appearing in <b></b> tags without including the tags in the
    # match
    /(?<=<b>)\w+(?=<\/b>)/.match("Fortune favours the <b>bold</b>")
    #=> #<MatchData "bold">

Options

The end delimiter for a regexp can be followed by one or more single-letter options which control how the pattern can match.

  • /pat/i - Ignore case

  • /pat/m - Treat a newline as a character matched by .

  • /pat/x - Ignore whitespace and comments in the pattern

  • /pat/o - Perform #{} interpolation only once

i, m, and x can also be applied on the subexpression level with the (?on-off) construct, which enables options on, and disables options off for the expression enclosed by the parentheses.

/a(?i:b)c/.match('aBc') #=> #<MatchData "aBc">
/a(?i:b)c/.match('abc') #=> #<MatchData "abc">

Free-Spacing Mode and Comments

As mentioned above, the x option enables free-spacing mode. Literal white space inside the pattern is ignored, and the octothorpe (#) character introduces a comment until the end of the line. This allows the components of the pattern to be organised in a potentially more readable fashion.

# A contrived pattern to match a number with optional decimal places
float_pat = /\A
[[:digit:]]+ # 1 or more digits before the decimal point
(\. # Decimal point
[[:digit:]]+ # 1 or more digits after the decimal point
)? # The decimal point and following digits are optional
\Z/
float_pat.match('3.14') #=> #<MatchData "3.14" 1:".14">

Note: To match whitespace in an x pattern use an escape such as \s or \p{Space}.

Comments can be included in a non-x pattern with the (?#comment) construct, where comment is arbitrary text ignored by the regexp engine.

Encoding

Regular expressions are assumed to use the source encoding. This can be overridden with one of the following modifiers.

  • /pat/u - UTF-8

  • /pat/e - EUC-JP

  • /pat/s - Windows-31J

  • /pat/n - ASCII-8BIT

A regexp can be matched against a string when they either share an encoding, or the regexp’s encoding is US-ASCII and the string’s encoding is ASCII-compatible.

If a match between incompatible encodings is attempted an Encoding::CompatibilityError exception is raised.

The Regexp#fixed_encoding? predicate indicates whether the regexp has a fixed encoding, that is one incompatible with ASCII. A regexp’s encoding can be explicitly fixed by supplying Regexp::FIXEDENCODING as the second argument of Regexp.new:

r = Regexp.new("a".force_encoding("iso-8859-1"),Regexp::FIXEDENCODING)
r =~"a\u3042"
#=> Encoding::CompatibilityError: incompatible encoding regexp match
(ISO-8859-1 regexp with UTF-8 string)

Performance

Certain pathological combinations of constructs can lead to abysmally bad performance.

Consider a string of 25 as, a d, 4 as, and a c.

s = 'a' * 25 + 'd' 'a' * 4 + 'c'
#=> "aaaaaaaaaaaaaaaaaaaaaaaaadadadadac"

The following patterns match instantly as you would expect:

/(b|a)/ =~ s #=> 0
/(b|a+)/ =~ s #=> 0
/(b|a+)*\/ =~ s #=> 0

However, the following pattern takes appreciably longer:

/(b|a+)*c/ =~ s #=> 32

This happens because an atom in the regexp is quantified by both an immediate + and an enclosing * with nothing to differentiate which is in control of any particular character. The nondeterminism that results produces super-linear performance. (Consult Mastering Regular Expressions (3rd ed.), pp 222, by Jeffery Friedl, for an in-depth analysis). This particular case can be fixed by use of atomic grouping, which prevents the unnecessary backtracking:

(start = Time.now) && /(b|a+)*c/ =~ s && (Time.now - start)
#=> 24.702736882
(start = Time.now) && /(?>b|a+)*c/ =~ s && (Time.now - start)
#=> 0.000166571

A similar case is typified by the following example, which takes approximately 60 seconds to execute for me:

# Match a string of 29 <i>a</i>s against a pattern of 29 optional
# <i>a</i>s followed by 29 mandatory <i>a</i>s.
Regexp.new('a?' * 29 + 'a' * 29) =~ 'a' * 29

The 29 optional as match the string, but this prevents the 29 mandatory as that follow from matching. Ruby must then backtrack repeatedly so as to satisfy as many of the optional matches as it can while still matching the mandatory 29. It is plain to us that none of the optional matches can succeed, but this fact unfortunately eludes Ruby.

One approach for improving performance is to anchor the match to the beginning of the string, thus significantly reducing the amount of backtracking needed.

Regexp.new('\A' 'a?' * 29 + 'a' * 29).match('a' * 29)
#=> #<MatchData "aaaaaaaaaaaaaaaaaaaaaaaaaaaaa">

Constants

EXTENDED

see #options and ::new

FIXEDENCODING

see #options and ::new

IGNORECASE

see #options and ::new

MULTILINE

see #options and ::new

NOENCODING

see #options and ::new

Public Class Methods

compile(*args)

Synonym for Regexp.new

escape(str) → string

Escapes any characters that would have special meaning in a regular expression. Returns a new escaped string, or self if no characters are escaped. For any string, Regexp.new(Regexp.escape(str))=~str will be true.

Regexp.escape('\*?{}.')   #=> \\\*\?\{\}\.
last_match → matchdata
last_match(n) → str

The first form returns the MatchData object generated by the last successful pattern match. Equivalent to reading the global variable $~. The second form returns the nth field in this MatchData object. n can be a string or symbol to reference a named capture.

Note that the last_match is local to the thread and method scope of the method that did the pattern match.

/c(.)t/ =~ 'cat'        #=> 0
Regexp.last_match #=> #<MatchData "cat" 1:"a">
Regexp.last_match(0) #=> "cat"
Regexp.last_match(1) #=> "a"
Regexp.last_match(2) #=> nil /(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ "var = val"
Regexp.last_match #=> #<MatchData "var = val" lhs:"var" rhs:"val">
Regexp.last_match(:lhs) #=> "var"
Regexp.last_match(:rhs) #=> "val"
new(string, [options [, lang]]) → regexp
new(regexp) → regexp
compile(string, [options [, lang]]) → regexp
compile(regexp) → regexp

Constructs a new regular expression from pattern, which can be either a String or a Regexp (in which case that regexp’s options are propagated, and new options may not be specified (a change as of Ruby 1.8). If options is a Fixnum, it should be one or more of the constants Regexp::EXTENDED, Regexp::IGNORECASE, and Regexp::MULTILINE, or-ed together. Otherwise, if options is not nil, the regexp will be case insensitive. When the lang parameter is `n’ or `N’ sets the regexp no encoding.

r1 = Regexp.new('^a-z+:\s+\w+')           #=> /^a-z+:\s+\w+/
r2 = Regexp.new('cat', true) #=> /cat/i
r3 = Regexp.new('dog', Regexp::EXTENDED) #=> /dog/x
r4 = Regexp.new(r2) #=> /cat/i
quote(str) → string

Escapes any characters that would have special meaning in a regular expression. Returns a new escaped string, or self if no characters are escaped. For any string, Regexp.new(Regexp.escape(str))=~str will be true.

Regexp.escape('\*?{}.')   #=> \\\*\?\{\}\.
try_convert(obj) → re or nil

Try to convert obj into a Regexp, using to_regexp method. Returns converted regexp or nil if obj cannot be converted for any reason.

Regexp.try_convert(/re/)         #=> /re/
Regexp.try_convert("re") #=> nil o = Object.new
Regexp.try_convert(o) #=> nil
def o.to_regexp() /foo/ end
Regexp.try_convert(o) #=> /foo/
union(pat1, pat2, ...) → new_regexp
union(pats_ary) → new_regexp

Return a Regexp object that is the union of the given patterns, i.e., will match any of its parts. The patterns can be Regexp objects, in which case their options will be preserved, or Strings. If no patterns are given, returns /(?!)/. The behavior is unspecified if any given pattern contains capture.

Regexp.union                         #=> /(?!)/
Regexp.union("penzance") #=> /penzance/
Regexp.union("a+b*c") #=> /a\+b\*c/
Regexp.union("skiing", "sledding") #=> /skiing|sledding/
Regexp.union(["skiing", "sledding"]) #=> /skiing|sledding/
Regexp.union(/dogs/, /cats/) #=> /(?-mix:dogs)|(?i-mx:cats)/

Public Instance Methods

Equality—Two regexps are equal if their patterns are identical, they have the same character set code, and their casefold? values are the same.

/abc/  == /abc/   #=> false
/abc/ == /abc/ #=> false
/abc/ == /abc/ #=> false
/abc/ == /abc/ #=> false
rxp === str → true or false

Case Equality—Synonym for Regexp#=~ used in case statements.

a = "HELLO"
case a
when /^[a-z]*$/; print "Lower case\n"
when /^[A-Z]*$/; print "Upper case\n"
else; print "Mixed case\n"
end

produces:

Upper case
rxp =~ str → integer or nil

Match—Matches rxp against str.

/at/ =~ "input data"   #=> 7
/ax/ =~ "input data" #=> nil

If =~ is used with a regexp literal with named captures, captured strings (or nil) is assigned to local variables named by the capture names.

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ "  x = y  "
p lhs #=> "x"
p rhs #=> "y"

If it is not matched, nil is assigned for the variables.

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ "  x = "
p lhs #=> nil
p rhs #=> nil

This assignment is implemented in the Ruby parser. The parser detects ‘regexp-literal =~ expression’ for the assignment. The regexp must be a literal without interpolation and placed at left hand side.

The assignment does not occur if the regexp is not a literal.

re = /(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/
re =~ " x = y "
p lhs # undefined local variable
p rhs # undefined local variable

A regexp interpolation, #{}, also disables the assignment.

rhs_pat = /(?<rhs>\w+)/
/(?<lhs>\w+)\s*=\s*#{rhs_pat}/ =~ "x = y"
p lhs # undefined local variable

The assignment does not occur if the regexp is placed at the right hand side.

"  x = y  " =~ /(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/
p lhs, rhs # undefined local variable
casefold? → true or false

Returns the value of the case-insensitive flag.

/a/.casefold?           #=> false
/a/.casefold? #=> true
/(?i:a)/.casefold? #=> false
encoding → encoding

Returns the Encoding object that represents the encoding of obj.

eql?(other_rxp) → true or false

Equality—Two regexps are equal if their patterns are identical, they have the same character set code, and their casefold? values are the same.

/abc/  == /abc/   #=> false
/abc/ == /abc/ #=> false
/abc/ == /abc/ #=> false
/abc/ == /abc/ #=> false
fixed_encoding? → true or false

Returns false if rxp is applicable to a string with any ASCII compatible encoding. Returns true otherwise.

r = /a/
r.fixed_encoding? #=> false
r =~ "\u{6666} a" #=> 2
r =~ "\xa1\xa2 a".force_encoding("euc-jp") #=> 2
r =~ "abc".force_encoding("euc-jp") #=> 0 r = /a/
r.fixed_encoding? #=> true
r.encoding #=> #<Encoding:UTF-8>
r =~ "\u{6666} a" #=> 2
r =~ "\xa1\xa2".force_encoding("euc-jp") #=> ArgumentError
r =~ "abc".force_encoding("euc-jp") #=> 0 r = /\u{6666}/
r.fixed_encoding? #=> true
r.encoding #=> #<Encoding:UTF-8>
r =~ "\u{6666} a" #=> 0
r =~ "\xa1\xa2".force_encoding("euc-jp") #=> ArgumentError
r =~ "abc".force_encoding("euc-jp") #=> nil
hash → fixnum

Produce a hash based on the text and options of this regular expression.

inspect → string

Produce a nicely formatted string-version of rxp. Perhaps surprisingly, #inspect actually produces the more natural version of the string than #to_s.

/ab+c/x.inspect        #=> "/ab+c/ix"
match(str) → matchdata or nil
match(str,pos) → matchdata or nil

Returns a MatchData object describing the match, or nil if there was no match. This is equivalent to retrieving the value of the special variable $~ following a normal match. If the second parameter is present, it specifies the position in the string to begin the search.

/(.)(.)(.)/.match("abc")[2]   #=> "b"
/(.)(.)/.match("abc", 1)[2] #=> "c"

If a block is given, invoke the block with MatchData if match succeed, so that you can write

pat.match(str) {|m| ...}

instead of

if m = pat.match(str)
...
end

The return value is a value from block execution in this case.

named_captures → hash

Returns a hash representing information about named captures of rxp.

A key of the hash is a name of the named captures. A value of the hash is an array which is list of indexes of corresponding named captures.

/(?<foo>.)(?<bar>.)/.named_captures
#=> {"foo"=>[1], "bar"=>[2]} /(?<foo>.)(?<foo>.)/.named_captures
#=> {"foo"=>[1, 2]}

If there are no named captures, an empty hash is returned.

/(.)(.)/.named_captures
#=> {}
names → [name1, name2, ...]

Returns a list of names of captures as an array of strings.

/(?<foo>.)(?<bar>.)(?<baz>.)/.names
#=> ["foo", "bar", "baz"] /(?<foo>.)(?<foo>.)/.names
#=> ["foo"] /(.)(.)/.names
#=> []
options → fixnum

Returns the set of bits corresponding to the options used when creating this Regexp (see Regexp::new for details. Note that additional bits may be set in the returned options: these are used internally by the regular expression code. These extra bits are ignored if the options are passed to Regexp::new.

Regexp::IGNORECASE                  #=> 1
Regexp::EXTENDED #=> 2
Regexp::MULTILINE #=> 4 /cat/.options #=> 0
/cat/x.options #=> 3
Regexp.new('cat', true).options #=> 1
/\xa1\xa2/.options #=> 16 r = /cat/x
Regexp.new(r.source, r.options) #=> /cat/ix
source → str

Returns the original string of the pattern.

/ab+c/x.source #=> "ab+c"

Note that escape sequences are retained as is.

/\x20\+/.source  #=> "\\x20\\+"
to_s → str

Returns a string containing the regular expression and its options (using the (?opts:source) notation. This string can be fed back in to Regexp::new to a regular expression with the same semantics as the original. (However, Regexp#== may not return true when comparing the two, as the source of the regular expression itself may differ, as the example shows). Regexp#inspect produces a generally more readable version of rxp.

r1 = /ab+c/x           #=> /ab+c/ix
s1 = r1.to_s #=> "(?ix-m:ab+c)"
r2 = Regexp.new(s1) #=> /(?ix-m:ab+c)/
r1 == r2 #=> false
r1.source #=> "ab+c"
r2.source #=> "(?ix-m:ab+c)"
~ rxp → integer or nil

Match—Matches rxp against the contents of $_. Equivalent to rxp =~ $_.

$_ = "input data"
~ /at/ #=> 7

ruby 正则表达式 ruby-doc原文的更多相关文章

  1. 雷林鹏分享:Ruby 正则表达式

    Ruby 正则表达式 正则表达式是一种特殊序列的字符,它通过使用有专门语法的模式来匹配或查找其他字符串或字符串集合. 语法 正则表达式从字面上看是一种介于斜杠之间或介于跟在 %r 后的任意分隔符之间的 ...

  2. ruby 正则表达式Regexp

    ruby正则表达式在线编辑器:rubular 一般规则: /a/匹配字符a.      /\?/匹配特殊字符?.特殊字符包括^, $, ? , ., /, \, [, ], {, }, (, ), + ...

  3. ruby 正则表达式

    Ruby学习笔记-正则表达式 Posted on 2011-11-29 17:55 Glen He 阅读(4998) 评论(0) 编辑 收藏 1.创建正则表达式 a) reg1 = /^[a-z]*$ ...

  4. 【ruby】ruby基础知识

    Install Ruby(安装) For windows you can download Ruby from http://rubyforge.org/frs/?group_id=167 for L ...

  5. ruby 正则表达式 匹配中文

    1.puts /[一-龥]+/.match("this is 中文")                 =>中文 2.str2="123中文"puts / ...

  6. ruby 正则表达式 匹配规则

  7. ruby 正则表达式 匹配所有符合规则的信息

    假设一个字符串当中有很多符合规则的信息,下面的例子可以把所有匹配到的结果打印出来: message="afhadhffkdf414j9tr3j43i3433094jwoert223jwew1 ...

  8. [ruby]Windows Ruby安装步骤

    Windows Ruby 安装步骤 准备工作: 1.http://rubyinstaller.org/downloads/ 下载选择Ruby 1.9.3 2.http://rubyinstaller. ...

  9. install ruby and ruby gem

    sudo apt-get install ruby #find an folder and: git clone https://github.com/rubygems/rubygems.git cd ...

随机推荐

  1. 「LuoguP4995」「洛谷11月月赛」 跳跳!(贪心

    题目描述 你是一只小跳蛙,你特别擅长在各种地方跳来跳去. 这一天,你和朋友小 F 一起出去玩耍的时候,遇到了一堆高矮不同的石头,其中第 ii 块的石头高度为 h_ihi​,地面的高度是 h_0 = 0 ...

  2. IE滚动条

    之前一直没留意过IE下面的滚动条样式,今天碰到一个优化需求,需要去掉横向的滚动条,只保留竖的滚动条. 实现方式很简单,设置宽度,overflow-x:hiddle:overflow-y:scroll ...

  3. uC/OS-II源码分析(四)

    内核结构 1,  临界区,OS_ENTER_CRITICAL和OS_EXIT_CRITICAL 为了处理临界区代码,必须关中断,等处理完毕后,再开中断.关中断可以避免其他任务或中断进入临界区代码.uC ...

  4. BZOJ3123:[SDOI2013]森林

    浅谈主席树:https://www.cnblogs.com/AKMer/p/9956734.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem.p ...

  5. hdu 5730 Shell Necklace —— 分治FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 DP式:\( f[i] = \sum\limits_{j=1}^{i} f[i-j] * a[j] ...

  6. 重学JAVA基础(二):Java反射

        看一下百度的解释:       JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法和属性:这种动态获取的信息     ...

  7. ubuntu_deb安装命令

    dpkg命令常用格式如下: sudo dpkg -I iptux.deb#查看iptux.deb软件包的详细信息,包括软件名称.版本以及大小等(其中-I等价于--info) sudo dpkg -c ...

  8. jquery中对于批量deferred的处理

    此代码仿照jquery源码中$.when()的实现 function test(i) { var dfd = $.Deferred(); if(i%2 == 0) { console.log(&quo ...

  9. K-S Test

    K-S test, test for the equality of continuous, one-dimensional probability distribution that can be ...

  10. yii使用CFrom调用ajax失败的记录

    在学习配置yii的CFrom的时候,发现怎么也不能让ajax生效,后来看文档后 ,终于发现了问题的所在. 问题配置文件如下 public function getUserConfig(){ retur ...