多线程创建方式

1.继承thread类,重写run方法

CreateThread createThread = new CreateThread();     ------createThread    继承过thread的类

2。实现runnable接口

Thread thread = new Thread(createThread);       ----------createThread  是new出来的实现接口的类

3.匿名内部类

new  thread(),然后在参数里new runnable接口

常用线程api方法

start()

currentThread()

getid()

getname()

sleep()

守护线程

thread.setDaemon(true);         使用setDaemon(true)方法设置为守护线程

多线程运行状态

join()方法作用

join作用是让其他线程变为等待,    t1.join();// 让其他线程变为等待,直到当前t1线程执行完毕,才释放。

thread.Join把指定的线程加入到当前线程,可以将两个交替执行的线程合并为顺序执行的线程。比如在线程B中调用了线程A的Join()方法,直到线程A执行完毕后,才会继续执行线程B。

优先级

范围为1-10,其中10最高,默认值为5。

// 注意设置了优先级,不代表每次都一定会被执行。只是CPU调度会有限分配

 t1.setPriority(10);

Yield方法

Thread.yield()方法的作用:暂停当前正在执行的线程,并执行其他线程。(可能没有效果)

如何停止线程?

1.  使用退出标志,使线程正常退出,也就是当run方法完成后线程终止。

使用flag

class StopThread implements Runnable {
private boolean flag = true; @Override
public synchronized void run() {
while (flag) {
try {
wait();
} catch (Exception e) {
//e.printStackTrace();
stopThread();
}
System.out.println("thread run..");
}
} public void stopThread() {
flag = false;
}
}

2.  使用stop方法强行终止线程(这个方法不推荐使用,因为stop和suspend、resume一样,也可能发生不可预料的结果)。

3.  使用interrupt方法中断线程。

为什么有线程安全问题?

当多个线程同时共享,同一个全局变量或静态变量,做写的操作时,可能会发生数据冲突问题,也就是线程安全问题。但是做读操作是不会发生数据冲突问题。

问:如何解决多线程之间线程安全问题?

答:使用多线程之间同步synchronized或使用锁(lock)。

问:为什么使用线程同步或使用锁能解决线程安全问题呢?

答:将可能会发生数据冲突问题(线程不安全问题),只能让当前一个线程进行执行。代码执行完成后释放锁,让后才能让其他线程进行执行。这样的话就可以解决线程不安全问题。

问:什么是多线程之间同步?

答:当多个线程共享同一个资源,不会受到其他线程的干扰。

同步代码块

什么是同步代码块?

答:就是将可能会发生线程安全问题的代码,给包括起来。

synchronized(同一个数据){

 可能会发生线程冲突问题

}

就是同步代码块

synchronized(对象)//这个对象可以为任意对象

{

需要被同步的代码

}

对象如同锁,持有锁的线程可以在同步中执行

没持有锁的线程即使获取CPU的执行权,也进不去

同步的前提:

1,必须要有两个或者两个以上的线程

2,必须是多个线程使用同一个锁

必须保证同步中只能有一个线程在运行

好处:解决了多线程的安全问题

弊端:多个线程需要判断锁,较为消耗资源、抢锁的资源。

 

同步函数

什么是同步函数?

答:在方法上修饰synchronized 称为同步函数

同学们思考问题?同步函数用的是什么锁?

答:同步函数使用this锁。

证明方式: 一个线程使用同步代码块(this明锁),另一个线程使用同步函数。如果两个线程抢票不能实现同步,那么会出现数据错误。

静态同步函数

答:什么是静态同步函数?

方法上加上static关键字,使用synchronized 关键字修饰 或者使用类.class文件。

静态的同步函数使用的锁是  该函数所属字节码文件对象

可以用 getClass方法获取,也可以用当前  类名.class 表示。

什么是ThreadLoca

ThreadLocal提供一个线程的局部变量,访问某个线程拥有自己局部变量。

当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。

ThreadLocal类接口很简单,只有4个方法,我们先来了解一下:

  • void set(Object value)设置当前线程的线程局部变量的值。
  • public Object get()该方法返回当前线程所对应的线程局部变量。
  • public void remove()将当前线程局部变量的值删除,目的是为了减少内存的占用,该方法是JDK 5.0新增的方法。需要指出的是,当线程结束后,对应该线程的局部变量将自动被垃圾回收,所以显式调用该方法清除线程的局部变量并不是必须的操作,但它可以加快内存回收的速度。
  • protected Object initialValue()返回该线程局部变量的初始值,该方法是一个protected的方法,显然是为了让子类覆盖而设计的。这个方法是一个延迟调用方法,在线程第1次调用get()或set(Object)时才执行,并且仅执行1次。ThreadLocal中的缺省实现直接返回一个null。
class Res {
// 生成序列号共享变量
public static Integer count = 0;
public static ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>() {
protected Integer initialValue() { return 0;
}; }; public Integer getNum() {
int count = threadLocal.get() + 1;
threadLocal.set(count);
return count;
}
} public class ThreadLocaDemo2 extends Thread {
private Res res; public ThreadLocaDemo2(Res res) {
this.res = res;
} @Override
public void run() {
for (int i = 0; i < 3; i++) {
System.out.println(Thread.currentThread().getName() + "---" + "i---" + i + "--num:" + res.getNum());
} } public static void main(String[] args) {
Res res = new Res();
ThreadLocaDemo2 threadLocaDemo1 = new ThreadLocaDemo2(res);
ThreadLocaDemo2 threadLocaDemo2 = new ThreadLocaDemo2(res);
ThreadLocaDemo2 threadLocaDemo3 = new ThreadLocaDemo2(res);
threadLocaDemo1.start();
threadLocaDemo2.start();
threadLocaDemo3.start();
} }

ThreadLoca实现原理

ThreadLoca通过map集合

Map.put(“当前线程”,值);

什么是多线程死锁?

答:同步中嵌套同步,导致锁无法释放

多线程有三大特性

原子性、可见性、有序性

什么是原子性

即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。

一个很经典的例子就是银行账户转账问题

比如从账户A向账户B转1000元,那么必然包括2个操作:从账户A减去1000元,往账户B加上1000元。这2个操作必须要具备原子性才能保证不出现一些意外的问题。

我们操作数据也是如此,比如i = i+1;其中就包括,读取i的值,计算i,写入i。这行代码在Java中是不具备原子性的,则多线程运行肯定会出问题,所以也需要我们使用同步和lock这些东西来确保这个特性了。

原子性其实就是保证数据一致、线程安全一部分,

什么是可见性

当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。

若两个线程在不同的cpu,那么线程1改变了i的值还没刷新到主存,线程2又使用了i,那么这个i值肯定还是之前的,线程1对变量的修改线程没看到这就是可见性问题。

什么是有序性

程序执行的顺序按照代码的先后顺序执行。

一般来说处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证程序中各个语句的执行先后顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的。如下:

int a = 10;    //语句1

int r = 2;    //语句2

a = a + 3;    //语句3

r = a*a;     //语句4

则因为重排序,他还可能执行顺序为 2-1-3-4,1-3-2-4
但绝不可能 2-1-4-3,因为这打破了依赖关系。
显然重排序对单线程运行是不会有任何问题,而多线程就不一定了,所以我们在多线程编程时就得考虑这个问题了。

Java内存模型

共享内存模型指的就是Java内存模型(简称JMM),JMM决定一个线程对共享变量的写入时,能对另一个线程可见。从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。

总结:什么是Java内存模型:java内存模型简称jmm,定义了一个线程对另一个线程可见。共享变量存放在主内存中,每个线程都有自己的本地内存,当多个线程同时访问一个数据的时候,可能本地内存没有及时刷新到主内存,所以就会发生线程安全问题。

Volatile

什么是Volatile

Volatile 关键字的作用是变量在多个线程之间可见。

Volatile非原子性

注意: Volatile非原子性

volatile与synchronized区别

仅靠volatile不能保证线程的安全性。(原子性)

①volatile轻量级,只能修饰变量。synchronized重量级,还可修饰方法

②volatile只能保证数据的可见性,不能用来同步,因为多个线程并发访问volatile修饰的变量不会阻塞。

synchronized不仅保证可见性,而且还保证原子性,因为,只有获得了锁的线程才能进入临界区,从而保证临界区中的所有语句都全部执行。多个线程争抢synchronized锁对象时,会出现阻塞。

线程安全性

线程安全性包括两个方面,①可见性。②原子性。

从上面自增的例子中可以看出:仅仅使用volatile并不能保证线程安全性。而synchronized则可实现线程的安全性。

Vector与ArrayList区别

HasTable与HasMap

synchronizedMap

Collections.synchronized*(m) 将线程不安全额集合变为线程安全集合

ConcurrentHashMap

ConcurrentMap接口下有俩个重要的实现 :
ConcurrentHashMap
ConcurrentskipListMap (支持并发排序功能。弥补ConcurrentHas hMa p)
ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个
小的HashTable,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并
发进行。把一个整体分成了16个段(Segment.也就是最高支持16个线程的并发修改操作。
这也是在重线程场景时减小锁的粒度从而降低锁竞争的一种方案。并且代码中大多共享变
量使用volatile关键字声明,目的是第一时间获取修改的内容,性能非常好。

CountDownLatch

CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。

public class Test002 {

    public static void main(String[] args) throws InterruptedException {
System.out.println("等待子线程执行完毕...");
CountDownLatch countDownLatch = new CountDownLatch(2);
new Thread(new Runnable() { @Override
public void run() {
System.out.println("子线程," + Thread.currentThread().getName() + "开始执行...");
countDownLatch.countDown();// 每次减去1
System.out.println("子线程," + Thread.currentThread().getName() + "结束执行...");
}
}).start();
new Thread(new Runnable() { @Override
public void run() {
System.out.println("子线程," + Thread.currentThread().getName() + "开始执行...");
countDownLatch.countDown();
System.out.println("子线程," + Thread.currentThread().getName() + "结束执行...");
}
}).start(); countDownLatch.await();// 调用当前方法主线程阻塞 countDown结果为0, 阻塞变为运行状态
System.out.println("两个子线程执行完毕....");
System.out.println("继续主线程执行..");
} }

CyclicBarrier

CyclicBarrier初始化时规定一个数目,然后计算调用了CyclicBarrier.await()进入等待的线程数。当线程数达到了这个数目时,所有进入等待状态的线程被唤醒并继续。

CyclicBarrier就象它名字的意思一样,可看成是个障碍, 所有的线程必须到齐后才能一起通过这个障碍。

CyclicBarrier初始时还可带一个Runnable的参数, 此Runnable任务在CyclicBarrier的数目达到后,所有其它线程被唤醒前被执行。

class Writer extends Thread {
private CyclicBarrier cyclicBarrier;
public Writer(CyclicBarrier cyclicBarrier){
this.cyclicBarrier=cyclicBarrier;
}
@Override
public void run() {
System.out.println("线程" + Thread.currentThread().getName() + ",正在写入数据");
try {
Thread.sleep(3000);
} catch (Exception e) {
// TODO: handle exception
}
System.out.println("线程" + Thread.currentThread().getName() + ",写入数据成功....."); try {
cyclicBarrier.await();
} catch (Exception e) {
}
System.out.println("所有线程执行完毕..........");
} } public class Test001 { public static void main(String[] args) {
CyclicBarrier cyclicBarrier=new CyclicBarrier(5);
for (int i = 0; i < 5; i++) {
Writer writer = new Writer(cyclicBarrier);
writer.start();
}
} }

Semaphore

Semaphore是一种基于计数的信号量。它可以设定一个阈值,基于此,多个线程竞争获取许可信号,做自己的申请后归还,超过阈值后,线程申请许可信号将会被阻塞。Semaphore可以用来构建一些对象池,资源池之类的,比如数据库连接池,我们也可以创建计数为1的Semaphore,将其作为一种类似互斥锁的机制,这也叫二元信号量,表示两种互斥状态。它的用法如下:

availablePermits函数用来获取当前可用的资源数量

wc.acquire(); //申请资源

wc.release();// 释放资源

    // 创建一个计数阈值为5的信号量对象
// 只能5个线程同时访问
Semaphore semp = new Semaphore(5); try {
// 申请许可
semp.acquire();
try {
// 业务逻辑
} catch (Exception e) { } finally {
// 释放许可
semp.release();
}
} catch (InterruptedException e) { }

并发队列

在并发队列上JDK提供了两套实现,一个是以ConcurrentLinkedQueue为代表的高性能队

列,一个是以BlockingQueue接口为代表的阻塞队列,无论哪种都继承自Queue。

线程池作用

线程池是为突然大量爆发的线程设计的,通过有限的几个固定线程为大量的操作服务,减少了创建和销毁线程所需的时间,从而提高效率。

如果一个线程的时间非常长,就没必要用线程池了(不是不能作长时间操作,而是不宜。),况且我们还不能控制线程池中线程的开始、挂起、和中止。

线程池的分类

Executor框架的最顶层实现是ThreadPoolExecutor类,Executors工厂类中提供的newScheduledThreadPool、newFixedThreadPool、newCachedThreadPool方法其实也只是ThreadPoolExecutor的构造函数参数不同而已。通过传入不同的参数,就可以构造出适用于不同应用场景下的线程池,那么它的底层原理是怎样实现的呢,这篇就来介绍下ThreadPoolExecutor线程池的运行过程。

corePoolSize: 核心池的大小。 当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中
maximumPoolSize: 线程池最大线程数,它表示在线程池中最多能创建多少个线程;
keepAliveTime: 表示线程没有任务执行时最多保持多久时间会终止。
unit: 参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性

线程池四种创建方式

Java通过Executors(jdk1.5并发包)提供四种线程池,分别为:
newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。

案例演示:

newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。

线程池原理剖析

提交一个任务到线程池中,线程池的处理流程如下:

1、判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。如果核心线程都在执行任务,则进入下个流程。

2、线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。

3、判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。

合理配置线程池

要想合理的配置线程池,就必须首先分析任务特性,可以从以下几个角度来进行分析:

任务的性质:CPU密集型任务,IO密集型任务和混合型任务。

任务的优先级:高,中和低。

任务的执行时间:长,中和短。

任务的依赖性:是否依赖其他系统资源,如数据库连接。

任务性质不同的任务可以用不同规模的线程池分开处理。CPU密集型任务配置尽可能少的线程数量,如配置Ncpu+1个线程的线程池。IO密集型任务则由于需要等待IO操作,线程并不是一直在执行任务,则配置尽可能多的线程,如2*Ncpu。混合型的任务,如果可以拆分,则将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐率要高于串行执行的吞吐率,如果这两个任务执行时间相差太大,则没必要进行分解。我们可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。

优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。

执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。

依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,如果等待的时间越长CPU空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用CPU。

一般总结哦,有其他更好的方式,希望各位留言,谢谢。

CPU密集型时,任务可以少配置线程数,大概和机器的cpu核数相当,这样可以使得每个线程都在执行任务

IO密集型时,大部分线程都阻塞,故需要多配置线程数,2*cpu核数

操作系统之名称解释:

某些进程花费了绝大多数时间在计算上,而其他则在等待I/O上花费了大多是时间,

前者称为计算密集型(CPU密集型)computer-bound,后者称为I/O密集型,I/O-bound。

Java锁的深度化

悲观锁与乐观锁

悲观锁:悲观锁悲观的认为每一次操作都会造成更新丢失问题,在每次查询时加上排他锁。

每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。

Select * from xxx for update;

乐观锁:乐观锁会乐观的认为每次查询都不会造成更新丢失,利用版本字段控制

重入锁

锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) 。这些已经写好提供的锁为我们开发提供了便利。

重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。

读写锁

相比Java中的锁(Locks in Java)里Lock实现,读写锁更复杂一些。假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁。在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源。但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(译者注:也就是说:读-读能共存,读-写不能共存,写-写不能共存)。这就需要一个读/写锁来解决这个问题。

CAS无锁机制

(1)与锁相比,使用比较交换(下文简称CAS)会使程序看起来更加复杂一些。但由于其非阻塞性,它对死锁问题天生免疫,并且,线程间的相互影响也远远比基于锁的方式要小。更为重要的是,使用无锁的方式完全没有锁竞争带来的系统开销,也没有线程间频繁调度带来的开销,因此,它要比基于锁的方式拥有更优越的性能。

(2)无锁的好处:

第一,在高并发的情况下,它比有锁的程序拥有更好的性能;

第二,它天生就是死锁免疫的。

就凭借这两个优势,就值得我们冒险尝试使用无锁的并发。

(3)CAS算法的过程是这样:它包含三个参数CAS(V,E,N): V表示要更新的变量,E表示预期值,N表示新值。仅当V值等于E值时,才会将V的值设为N,如果V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么都不做。最后,CAS返回当前V的真实值。

(4)CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成操作。当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败。失败的线程不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。基于这样的原理,CAS操作即使没有锁,也可以发现其他线程对当前线程的干扰,并进行恰当的处理。

(5)简单地说,CAS需要你额外给出一个期望值,也就是你认为这个变量现在应该是什么样子的。如果变量不是你想象的那样,那说明它已经被别人修改过了。你就重新读取,再次尝试修改就好了。

(6)在硬件层面,大部分的现代处理器都已经支持原子化的CAS指令。在JDK 5.0以后,虚拟机便可以使用这个指令来实现并发操作和并发数据结构,并且,这种操作在虚拟机中可以说是无处不在。

自旋锁

自旋锁是采用让当前线程不停地的在循环体内执行实现的,当循环的条件被其他线程改变时 才能进入临界区。

分布式锁

如果想在不同的jvm中保证数据同步,使用分布式锁技术。

有数据库实现、缓存实现、Zookeeper分布式锁

《java学习二》并发编程的更多相关文章

  1. Java 多线程高并发编程 笔记(一)

    本篇文章主要是总结Java多线程/高并发编程的知识点,由浅入深,仅作自己的学习笔记,部分侵删. 一 . 基础知识点 1. 进程于线程的概念 2.线程创建的两种方式 注:public void run( ...

  2. Java 多线程:并发编程的三大特性

    Java 多线程:并发编程的三大特性 作者:Grey 原文地址: 博客园:Java 多线程:并发编程的三大特性 CSDN:Java 多线程:并发编程的三大特性 可见性 所谓线程数据的可见性,指的就是内 ...

  3. Java学习:网络编程总结

    Java网络编程总结 一.概述 计算机网络是通过传输介质.通信设施和网络通信协议,把分散在不同地点的计算机设备互连起来,实现资源共享和数据传输的系统.网络编程就就是编写程序使联网的两个(或多个)设备( ...

  4. Java学习之网络编程实例

    转自:http://www.cnblogs.com/springcsc/archive/2009/12/03/1616413.html 多谢分享 网络编程 网络编程对于很多的初学者来说,都是很向往的一 ...

  5. java线程高并发编程

    java线程具体解释及高并发编程庖丁解牛 线程概述: 祖宗: 说起java高并发编程,就不得不提起一位老先生Doug Lea,这位老先生可不得了.看看百度百科对他的评价,一点也不为过: 假设IT的历史 ...

  6. java架构《并发编程框架篇 __Disruptor》

    Disruptor入门   获得Disruptor 可以通过Maven或者下载jar来安装Disruptor.只要把对应的jar放在Java classpath就可以了. 基本的事件生产和消费 我们从 ...

  7. 【Java进阶】并发编程

    PS:整理自极客时间<Java并发编程> 1. 概述 三种性质 可见性:一个线程对共享变量的修改,另一个线程能立刻看到.缓存可导致可见性问题. 原子性:一个或多个CPU执行操作不被中断.线 ...

  8. Java中的并发编程集合使用

    一.熟悉Java自带的并发编程集合 在java.util.concurrent包里有很多并发编程的常用工具类. package com.ietree.basicskill.mutilthread.co ...

  9. python学习之并发编程

    目录 一.并发编程之多进程 1.multiprocessing模块介绍 2.Process类的介绍 3.Process类的使用 3.1 创建开启子进程的两种方式 3.2 获取进程pid 3.3验证进程 ...

  10. Java学习笔记-网络编程

    Java提供了网络编程,并且在实际中有着大量运用 网络编程 网络编程概述 网络模型 OSI参考模型 TCP/IP参考模型 网络通讯要素 IP地址 端口号 传输协议 网络参考模型 网络通讯要素 IP地址 ...

随机推荐

  1. Git Shell Warning

    Warning: Permanently added 'github.com,192.30.252.120' <RSA> to the list of known hosts. The a ...

  2. <十八>UML核心视图动态视图之协作图

    一:协作图 --->描述了对象间交互的一种模式.它通过对象之间的连接和它们相互发送的消息来显示参与交互的对象 --->协作图可以有对象和主角实例,以及描述它们之间关系和交互的连接和消息.通 ...

  3. DDP入门

    DDP,即动态动态规划,可以用于解决一类带修改的DP问题. 我们从一个比较简单的东西入手,最大子段和. 带修改的最大子段和其实是常规问题了,经典的解决方法是用线段树维护从左,右开始的最大子段和和区间最 ...

  4. vue文件名规范

    之前有看过一些命名规范,也看到说vue文件命名要么全是小写要么就是用小写 + '-':其实看到的时候有点不以意,因为本地能跑起项目:发布能正常访问也就OK了. 但是今天在做自动化部署的时候碰到一个问题 ...

  5. 主备角色switch

    理论知识:Switchover 切换允许primary 和一个备库进行切换,并且这种切换没有数据丢失. 前提条件: 1) 主备库相关参数 fal_client.fal_server .standby_ ...

  6. Ubuntu 获得超级用户权限

    sudo passwd root 首先要先输入当前用户的密码,再在"输入新的UNIX密码"后面输入你想要设置的 root 密码即可,然后就可以切换到 super user 了: $ ...

  7. Iptables防火墙面试题

    Iptables防火墙面试题 第1章 (一)基础口试题 1.1 详述 iptales 工作流程以及规则过滤顺序? 1.防火墙是一层层过滤的.实际是按照配置规则的顺序从上到下,从前到后进行过滤的. 2. ...

  8. CS231n 2016 通关 第六章 Training NN Part2

    本章节讲解 参数更新 dropout ================================================================================= ...

  9. 要把target下面虚拟路径的项目文件…

     源码进不去,要检查target下面的项目文件,要删除掉. 版权声明:本文为博主原创文章,未经博主允许不得转载.

  10. ASP.NET中 TextBox 文本输入框控件的使用方法

    TextBox控件又称文本框控件,为用户提供输入文本的功能. 1.属性 TextBox控件的常用属性及说明如表1所示. 表1 TextBox控件常用属性及说明 属性 说明 AutoPostBack 获 ...