package Basic;

import java.util.Scanner;

public class Gcd {
public static void main(String[] args) {
Scanner scanner=new Scanner(System.in);
int num_1=scanner.nextInt();
int num_2=scanner.nextInt();
if(num_1>num_2){
System.out.println(gcd(num_1, num_2));
}
else {
System.out.println(gcd(num_2, num_1));
} }
private static int gcd(int x,int y) {
int result = 0;
int temp = 0;
while(y!=0){
temp = y;
y=x%y;
x=temp; }
return temp;
}
}

算法思路任意两个非零正整数,M,N求最大公约数,欧几里得算法采用的方法是重复应用下列等式,知道 M mod N =0;

gcd(m,n)=gcd(m mod n);  m mod n表示 m%n

比如gcd(36,24)=gcd(24,12)=gcd(12,0)=12

【算法基础】欧几里得gcd求最大公约数的更多相关文章

  1. 算法:欧几里得求最大公约数(python版)

    #欧几里得求最大公约数 #!/usr/bin/env python #coding -*- utf:8 -*- #iteration def gcd(a,b): if b==0: return a e ...

  2. poj 1061(扩展欧几里得定理求不定方程)

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...

  3. GCD求最大公约数

    求最大公约数哪个强,果断GCD,非递归版本和递归版本如下: #include<iostream> using namespace std; int gcd(int a, int b){ / ...

  4. GCD: 求两数最大公因数算法【欧几里得法】原理的个人理解 (80%图片讲解!)

    那么,求 a,b 的最大公因数就是求最大的,能均分a,b的块!  

  5. 【数学/扩展欧几里得/线性求逆元】[Sdoi2008]沙拉公主的困惑

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...

  6. 欧几里得算法/欧几里得扩展算法-python

    说在开头. 出于对欧几里得的尊重,先简单介(cou)绍(ge)一(zi)下(shu).. 欧几里得,古希腊人,数学家.他活跃于托勒密一世时期的亚历山大里亚,被称为“几何之父”. 他最著名的著作< ...

  7. GCD nyoj 1007 (欧拉函数+欧几里得)

    GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor ...

  8. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  9. ZOJ Problem Set - 3593 拓展欧几里得 数学

    ZOJ Problem Set - 3593 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3593 One Person ...

随机推荐

  1. Flutter实战视频-移动电商-65.会员中心_订单区域UI布局

    65.会员中心_订单区域UI布局 我的订单区域 member.dart写我的标题的方法 布局使用瓦片布局 先做修饰,decoration颜色的背景,下边线的样式 //我的订单标题 Widget _or ...

  2. 一步步完成“迷你版” 的ASP.NET Core框架

    一 前言 Artech 分享了 200行代码,7个对象--让你了解ASP.NET Core框架的本质 . 用一个极简的模拟框架阐述了ASP.NET Core框架最为核心的部分. 这里一步步来完成这个迷 ...

  3. Codeforces 749C【模拟】

    FST的时候好像挂了挺多人的~ 其实思路没啥难的,就是更好地理解题意吧,1到n一直循环,直到没有人能vote,一个人能vote也能叉掉一个人,一个人被叉就不能vote,判谁赢. 其实我管vote干嘛, ...

  4. 51nod1276(xjb)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1276 题意:中文题诶- 思路:xjb 通过画图可以发现对于当前 ...

  5. iOS7 UITableView Row Height Estimation

    This post is part of a daily series of posts introducing the most exciting new parts of iOS7 for dev ...

  6. (转)java 线程同步

    转自 http://blog.csdn.net/column/details/java-thread.html http://leo-faith.iteye.com/blog/177779 http: ...

  7. 页面嵌套时js失效解决方法

    事件:iframe或easyui的dialog嵌套页面时,被嵌套的页面可能js因位置失效; 解决: //动态加载js(根据父级html位置计算) jQuery.getScript("scri ...

  8. 基于.net core微服务(Consul、Ocelot、Docker、App.Metrics+InfluxDB+Grafana、Exceptionless、数据一致性、Jenkins)

    1.微服务简介 一种架构模式,提倡将单一应用程序划分成一组小的服务,服务之间互相协调.互相配合,为用户提供最终价值.每个服务运行在其独立的进程中,服务与服务间采用轻量级的通信机制互相沟通(RESTfu ...

  9. Oracle / PLSQL写语句 常用的几个函数

    下面开始记录一下,自己在Oracle或者PLSQL常用的几个函数, 1add_months 增加或减去月份2. last_day(sysdate) 返回日期的最后一天3. months_between ...

  10. 转 造成ORA-01843 无效的月份的一些原因