CodeForces - 660F:Bear and Bowling 4(DP+斜率优化)
Limak is an old brown bear. He often goes bowling with his friends. Today he feels really good and tries to beat his own record!
For rolling a ball one gets a score — an integer (maybe negative) number of points. Score for the i-th roll is multiplied by i and scores are summed up. So, for k rolls with scores s1, s2, ..., sk, the total score is . The total score is 0 if there were no rolls.
Limak made n rolls and got score ai for the i-th of them. He wants to maximize his total score and he came up with an interesting idea. He can say that some first rolls were only a warm-up, and that he wasn't focused during the last rolls. More formally, he can cancel any prefix and any suffix of the sequence a1, a2, ..., an. It is allowed to cancel all rolls, or to cancel none of them.
The total score is calculated as if there were only non-canceled rolls. So, the first non-canceled roll has score multiplied by 1, the second one has score multiplied by 2, and so on, till the last non-canceled roll.
What maximum total score can Limak get?
Input
The first line contains a single integer n (1 ≤ n ≤ 2·105) — the total number of rolls made by Limak.
The second line contains n integers a1, a2, ..., an (|ai| ≤ 107) — scores for Limak's rolls.
Output
Print the maximum possible total score after cancelling rolls.
Examples
6
5 -1000 1 -3 7 -8
16
5
1000 1000 1001 1000 1000
15003
3
-60 -70 -80
0
题意:给定一段数列,现在叫你取其中一段,第一位*1,第二位*2...求最大。
思路:设前缀和和是sum[n]=a[1]+a[2]+...a[n],原先的dp[n]=a[1]*1+a[2]*2+a[3]*3+..a[n]*n;
那么现在的max[i]=max:dp[i]-dp[j]-(sum[i]-sum[j])*j; =-sum[i]*j+j*sum[j]-dp[j]+dp[j]
显然可以斜率优化,由于K=sum[i]并不是单调递增的,所以我们维护凸包不能弹出队首,而需要二分。
和BZOJ2726一样,就补多说了。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=;
ll s[maxn],dp[maxn],q[maxn],top,ans;
ll Y(int i){ return s[i]*i-dp[i];}
ll g(int i,int j){ return dp[i]-dp[j]-j*(s[i]-s[j]); }
int main()
{
int N,i,j;
scanf("%d",&N);
for(i=;i<=N;i++){
scanf("%I64d",&s[i]);
dp[i]=dp[i-]+s[i]*i;
s[i]+=s[i-];
ans=max(ans,dp[i]);
}
for(i=;i<=N;i++){
int L=,R=top-,Mid,t=top;
while(L<=R){
Mid=(L+R)>>;
if(g(i,q[Mid])>=g(i,q[Mid+])) t=Mid,R=Mid-;
else L=Mid+;//或者用斜率二分
}
ans=max(ans,g(i,q[t]));
while(top&&(Y(i)-Y(q[top]))*(q[top]-q[top-])>(Y(q[top])-Y(q[top-]))*(i-q[top])) top--;
q[++top]=i;
}
printf("%I64d\n",ans);
return ;
}
CodeForces - 660F:Bear and Bowling 4(DP+斜率优化)的更多相关文章
- Codeforces 660F Bear and Bowling 4 斜率优化 (看题解)
Bear and Bowling 4 这也能斜率优化... max[ i ] = a[ i ] - a[ j ] - j * (sum[ i ] - sum[ j ])然后就能斜率优化啦, 我咋没想到 ...
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
- BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)
[ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...
- 学渣乱搞系列之dp斜率优化
学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...
- DP斜率优化总结
目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...
- HDU 3507 [Print Article]DP斜率优化
题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...
- dp斜率优化
算法-dp斜率优化 前置知识: 凸包 斜率优化很玄学,凭空讲怎么也讲不好,所以放例题. [APIO2014]序列分割 [APIO2014]序列分割 给你一个长度为 \(n\) 的序列 \(a_1,a_ ...
随机推荐
- hibernate批量更新和删除数据
批量处理 不建议用Hibernate,它的insert效率实在不搞,不过最新版本的Hibernate似乎已经在批量处理的时候做过优化了,设置一些参数如batch_size,不过性能我没有测试过,听说 ...
- python学习(二)python中的核心数据类型
数据类型是编程语言中的很重要的一个组成部分,我所知道的有数据类型的好处有:在内存中存放的格式知道,规定了有哪几种可用的操作. 我的埋点:为什么要有数据类型 那么python中的数据类型有哪几种呢? 对 ...
- YARN/MRv2 中基本术语介绍
YARN/MRv2是下一代MapReduce框架(见Hadoop-0.23.0),该框架完全不同于当前的MapReduce框架,它在扩展性,容错性和通用性等方面更出色,据统计,Yarn有超过15000 ...
- 有关Cache –(1) linux list之中的Prefetc
转载:http://www.kernelchina.org/node/1050 linux的list实现之中有如下东东: #define list_for_each(pos, head) \ ...
- Notepad++集成Subversion SVN插件
点击Plugin –> Plugin Manager –> Show Plugin Manager 打开后,在“Available”页找到“Subversion”,然后点击“Install ...
- 03 redis之string类型命令解析
Redis字符串类型的操作 set key value [ex 秒数] / [px 毫秒数] [nx] /[xx] 如: set a 1 ex 10 , 10秒有效 Set a 1 px 9000 , ...
- access变转换为mysql表工具
1.一个是国外软件,名字叫Access2MySQL,下载地址:http://www.pc6.com/softview/SoftView_7187.html 2.第二款软件是月光博客写的一个小软件:DB ...
- Mac root Operation not permitted
在mac下sudo 拷贝和删除文件时提醒Operation not permitted. 网上查了一些资料,需要执行 chflags nouchg /path/to/item 命令. 赶紧照做, ...
- 【zabbix】自动注册,实现自动发现agent并添加监控(agent不需要任何配置)
更新: 后来在实际使用中发现,与其使用zabbix自动注册,不如直接调用zabbix的api主动发起添加服务器的请求,这样就不需要在zabbixserver上配置host信息了.实现全自动.具体调用方 ...
- MySQL修改配置 区分大小写
在使用mysql的时候,数据库名,表名,字段名等有大小写的区分,这个可以通过配置文件设置.如果设置了严格区分大小写,在访问表的时候没有注意到表名的大小写,将会报出表不存在的错误.下面是修改配置文件: ...