Necklace

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 4003    Accepted Submission(s): 1330

Problem Description
Mery has a beautiful necklace. The necklace is made up of N magic balls. Each ball has a beautiful value. The balls with the same beautiful value look the same, so if two or more balls have the same beautiful value, we just count it once. We define the beautiful
value of some interval [x,y] as F(x,y). F(x,y) is calculated as the sum of the beautiful value from the xth ball to the yth ball and the same value is ONLY COUNTED ONCE. For example, if the necklace is 1 1 1 2 3 1, we have F(1,3)=1, F(2,4)=3, F(2,6)=6.



Now Mery thinks the necklace is too long. She plans to take some continuous part of the necklace to build a new one. She wants to know each of the beautiful value of M continuous parts of the necklace. She will give you M intervals [L,R] (1<=L<=R<=N) and you
must tell her F(L,R) of them.
 
Input
The first line is T(T<=10), representing the number of test cases.

  For each case, the first line is a number N,1 <=N <=50000, indicating the number of the magic balls. The second line contains N non-negative integer numbers not greater 1000000, representing the beautiful value of the N balls. The third line has a number
M, 1 <=M <=200000, meaning the nunber of the queries. Each of the next M lines contains L and R, the query.
 
Output
For each query, output a line contains an integer number, representing the result of the query.
 
Sample Input
2
6
1 2 3 4 3 5
3
1 2
3 5
2 6
6
1 1 1 2 3 5
3
1 1
2 4
3 5
 
Sample Output
3
7
14
1
3
6
对于这道题。大家能够看我博客里http://blog.csdn.net/qq_18661257/article/details/47419441提供的离线处理教程后,基本能够理解离线处理的机制了,然后我们就要对比理解题目。不能出现反复的数字,所以能够离线最右边的值,将前面的值一一删除就能够得到正确答案,当然,大家还需注意的是数值取值范围为long long ,我就是在这个上面看了接近一个小时,query()函数的返回值应该也是long long 。坑爹的地方就是这里了,其它的,大家看代码基本能够秒懂的

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long LL;
#define lson rt << 1, l, mid
#define rson rt << 1|1, mid + 1, r
#define root 1, 1, N
const int MAXN = 5e4 + 5;
const int MAXM = 2e5 + 5;
const int MAXS = 1e6 + 5;
int N, M, T, pre[MAXS];
LL Ans[MAXM],Sum[MAXN << 2]; struct node {
int l, r, id;
bool operator < (const node & object) const {
return r < object.r;
}
} Node[MAXM]; void pushup(int rt) {
Sum[rt] = Sum[rt << 1] + Sum[rt << 1|1];
} void build(int rt,int l,int r) {
if(l == r) {
scanf("%I64d", &Sum[rt]);
return;
}
int mid = (l + r) >> 1;
build(lson);
build(rson);
pushup(rt);
} void update(int p,int rt, int l, int r) {
if(l == r) {
Sum[rt] = 0;
return;
}
int mid = (l + r) >> 1;
if(p <= mid) update(p, lson);
else update(p, rson);
pushup(rt);
} LL query(int L, int R, int rt, int l, int r) {
if(L <= l && r <= R) {
return Sum[rt];
}
int mid = (l + r) >> 1;
LL ret = 0;
if(L <= mid) ret += query(L, R, lson);
if(R > mid) ret += query(L, R, rson);
return ret;
} int main() {
//freopen("D://imput.txt","r",stdin);
scanf("%d", &T);
while(T --) {
scanf("%d", &N);
build(root);
scanf("%d", &M);
for(int i = 1 ; i <= M ; i ++) {
scanf("%d %d", &Node[i].l, &Node[i].r);
Node[i].id = i;
}
memset(pre, -1, sizeof(pre));
sort(Node + 1, Node + M + 1);
for(int i = 1,j = 1; i <= N; i++) {
int tmp = query(i, i, root);
if(tmp != 0 && pre[tmp] != -1) {//假设前面存在反复的数字则删除他
update(pre[tmp],root);
}
pre[tmp] = i;
while(j <= M && Node[j].r == i) {//假设右边的值等于当前的值,则进行求和,大家能够參考我博客里的教程
Ans[Node[j].id] = query(Node[j].l, Node[j].r, root);
j ++;
}
}
for(int i = 1; i <= M ; i ++) {
printf("%I64d\n", Ans[i]);
}
}
return 0;
}


 

HDU - 3874 Necklace (线段树 + 离线处理)的更多相关文章

  1. Necklace HDU - 3874 (线段树/树状数组 + 离线处理)

    Necklace HDU - 3874  Mery has a beautiful necklace. The necklace is made up of N magic balls. Each b ...

  2. HDU 3874 Necklace (树状数组 | 线段树 的离线处理)

    Necklace Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  3. HDU 4638-Group(线段树+离线处理)

    题意: 给n个编号,m个查询每个查询l,r,求下标区间[l,r]中能分成标号连续的组数(一组内的标号是连续的) 分析: 我们认为初始,每个标号为一个组(线段树维护区间组数),从左向右扫序列,当前标号, ...

  4. HDU 4417 【线段树+离线处理】

    http://acm.hdu.edu.cn/showproblem.php?pid=4417 题意:找出给定区间内,有多少个数小于等于给定的数.用线段树维护的话会超时,要用到线段树的离线操作,对询问与 ...

  5. hdu 4288 Coder (线段树+离线)

    题意: 刚开始有一个空集合.有三种操作: 1.往集合中加入一个集合中不存在的数 x 2.从集合中删除一个已经存在的数 x 3.计算集合的digest sum并输出.       digest sum求 ...

  6. HDU-3874 Necklace 线段树+离线

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3874 比较简单的题,题意也好懂. 先O(n)求每个数左边第一次出现的与他相同的数的位置l[i].对询问 ...

  7. hdu 3874 Necklace(bit树+事先对查询区间右端点排序)

    Mery has a beautiful necklace. The necklace is made up of N magic balls. Each ball has a beautiful v ...

  8. HDU 3874 离线段树

    在所有数字的统计范围,,对于重复统计只有一次 离线段树算法 排序终点坐标.然后再扫,反复交锋.把之前插入树行被删除 #include "stdio.h" #include &quo ...

  9. HDU3874 线段树 + 离线处理

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3874 , 线段树(或树状数组) + 离线处理 下午做了第一道离线处理的题目(HDU4417),多少有点 ...

随机推荐

  1. java运行时间计算

    long startTime = System.currentTimeMillis(); //获取开始时间 doSomething(); //测试的代码段 long endTime = System. ...

  2. js setInterval 启用&停止

    以下面例子为说明: <title></title> <script src="Scripts/jquery-1.4.1-vsdoc.js" type= ...

  3. 【转】axios的基本使用

    axios的基本使用 vue更新到2.0之后,作者就宣告不再对vue-resource更新,而是推荐的 axios 基于 Promise 的 HTTP 请求客户端,可同时在浏览器和 node.js 中 ...

  4. Maven构建多模块项目

    使用Maven构建多模块项目 转自:http://www.cnblogs.com/xdp-gacl/p/4242221.html 在平时的Javaweb项目 开发中为了便于后期的维护,我们一般会进行分 ...

  5. Nhibernate基本的增删改查实践

    1.链接配置 <?xml version="1.0" encoding="utf-8" ?> <hibernate-configuration ...

  6. food(洛谷P4040 [AHOI2014/JSOI2014]宅男计划)

    题目在这里 题目描述 外卖店一共有N种食物,分别有1到N编号.第i种食物有固定的价钱Pi和保质期Si.第i种食物会在Si天后过期.JYY是不会吃过期食物的. 比如JYY如果今天点了一份保质期为1天的食 ...

  7. ckeditor编辑的使用方法

    一.下载安装Ckeditor,并将其整合到项目中 1.什么是CKeditor?为什么要使用它? 我们在做门户网站或者公文系统时,客户经常要求在录入时能够更改字体样式.大小.颜色并具备插入图片的功能.而 ...

  8. poj 2796 Feel Good dp || 单调栈

    题目链接 题意 对于一个长度为\(n\)的非负整数数列\(a_1,a_2,-,a_n\),求\(max_{1≤l≤r≤n}f(l,r)\), 其中 \[f(l,r)=min(a_l,a_{l+1},- ...

  9. 《Linux命令行与shell脚本编程大全 第3版》Linux命令行---13

    以下为阅读<Linux命令行与shell脚本编程大全 第3版>的读书笔记,为了方便记录,特地与书的内容保持同步,特意做成一节一次随笔,特记录如下:

  10. MSP430 G2553 寄存器列表与引脚功能

    USCI_B0 USCI_B0 发送缓冲器UCB0TXBUF 06Fh USCI_B0 接收缓冲器UCB0RXBUF 06Eh USCI_B0 状态UCB0STAT 06Dh USCI B0 I2C ...