Hrbust 2363 Symmys (Manacher + DP)
题目链接 Hrbust 2363
来源 “科林明伦杯”哈尔滨理工大学第七届程序设计团队赛 Problem J
题意 给出一个长度为$1e6$的字符串,求最小可重回文子串覆盖数量
首先Manacher预处理出以$s[i]$为首字母的回文子串的长度的最大值
然后求出包含$s[i]$的回文子串的能延伸到的最左端的位置
DP即可
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) const int N = 2e6 + 10; char a[N], s[N];
int dp[N], c[N], d[N], f[N], g[N];
int T, n, m, r, p, cnt, ans, now, ca = 0;
vector <int> v[N]; void up(int &x, int y){ if (x < y) x = y;} int main(){ scanf("%d", &T);
while (T--){
scanf("%s", a + 1);
n = strlen(a + 1);
rep(i, 1, n) s[i << 1] = a[i], s[i << 1 | 1] = '#';
s[0] = '$', s[1] = '#', s[m = (n + 1) << 1] = '@';
r = 0, p = 0, f[1] = 1;
rep(i, 2, m - 1){
for (f[i] = r > i ? min(r - i, f[p * 2 - i]) : 1; s[i - f[i]] == s[i + f[i]]; f[i]++);
if (i + f[i] > r) r = i + f[i], p = i;
} rep(i, 0, m) g[i] = 0;
rep(i, 2, m - 1) up(g[i - f[i] + 1], i + 1);
rep(i, 1, m) up(g[i], g[i - 1]);
ans = 0; cnt = 0;
for (int i = 2; i < m; i += 2){
++cnt;
c[cnt] = g[i] - i;
} rep(i, 1, n) c[i] = i + c[i] - 1;
rep(i, 1, n) d[i] = i;
rep(i, 1, n) d[c[i]] = min(d[c[i]], i);
dec(i, n - 1, 1) d[i] = min(d[i], d[i + 1]);
rep(i, 0, n + 1) dp[i] = 1e9; dp[0] = 0;
rep(i, 1, n) dp[i] = min(dp[i], dp[d[i] - 1] + 1);
printf("Case #%d: %d\n", ++ca, dp[n]);
} return 0;
}
Hrbust 2363 Symmys (Manacher + DP)的更多相关文章
- 1089 最长回文子串 V2(Manacher算法)
1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 回文串是指aba.abba.cccbccc.aaaa ...
- ACdreamOJ 1154 Lowbit Sum (数字dp)
ACdreamOJ 1154 Lowbit Sum (数位dp) ACM 题目地址:pid=1154" target="_blank" style="color ...
- 「SDOI2016」储能表(数位dp)
「SDOI2016」储能表(数位dp) 神仙数位 \(dp\) 系列 可能我做题做得少 \(QAQ\) \(f[i][0/1][0/1][0/1]\) 表示第 \(i\) 位 \(n\) 是否到达上界 ...
- 【HDU1693】Eat the Trees(插头dp)
[HDU1693]Eat the Trees(插头dp) 题面 HDU Vjudge 大概就是网格图上有些点不能走,现在要找到若干条不相交的哈密顿回路使得所有格子都恰好被走过一遍. 题解 这题的弱化版 ...
- 【BZOJ1814】Ural 1519 Formula 1 (插头dp)
[BZOJ1814]Ural 1519 Formula 1 (插头dp) 题面 BZOJ Vjudge 题解 戳这里 上面那个链接里面写的非常好啦. 然后说几个点吧. 首先是关于为什么只需要考虑三进制 ...
- 【BZOJ4712】洪水(动态dp)
[BZOJ4712]洪水(动态dp) 题面 BZOJ 然而是权限题QwQ,所以粘过来算了. Description 小A走到一个山脚下,准备给自己造一个小屋.这时候,小A的朋友(op,又叫管理员)打开 ...
- 【HDU 5647】DZY Loves Connecting(树DP)
pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...
- 【POJ2411】Mondriaan's Dream(轮廓线DP)
[POJ2411]Mondriaan's Dream(轮廓线DP) 题面 Vjudge 题解 这题我会大力状压!!! 时间复杂度大概是\(O(2^{2n}n^2)\),设\(f[i][S]\)表示当前 ...
- 51Nod 1089:最长回文子串 V2(Manacher算法)
1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 回文串是指aba.abba.cccbccc.aaa ...
随机推荐
- Android使用Glide加载Gif.解决Glide加载Gif非常慢问题
在Glide文档中找了半天没发现加载Gif的方式.然后通过基本的用法去加载: Glide.with(MainActivity.this).load(url).asGif().into(imageVie ...
- CART树 python小样例
决策树不断将数据切分成小数据集,直到所有目标变量完全相同,或者数据不能再切分为止,决策时是一种贪心算法,它要在给定的时间内做出最佳选择,但并不关心能否达到最优 树回归 优点:可以对复杂和非线性的数据建 ...
- datagrid的formatter
1.formatter函数 formatter:function(value,rowData,rowIndex){ return 'xxx'; } 注意: (1)formatter一定要有返回,且返回 ...
- mysql 分组查询前n条数据
今天去面试,碰到一道面试题: 有一个学生成绩表,表中有 表id.学生名.学科.分数.学生id .查询每科学习最好的两名学生的信息: 建表sql: CREATE TABLE `stuscore` ( ` ...
- laravel5.2总结--关联关系
参考文章 http://laravelacademy.org/post/1095.html http://laravelacademy.org/post/1174.html http://d.lar ...
- 33、secret
CemFjee9rueuoeeQhgkxCee9kee7nO+8jOW6lOeUqO+8jOaVsOaNruW6k+acjeWKoeeahOWFs+mUruS/oeaBr++8iOWmgiDmnI3l ...
- IOS开发学习笔记031-代码实现微博界面
微博界面如下 1.准备资源文件 新建一个plist文件,添加条目,root类型是array,子类型是Dictionary 2.更改父类,实现代理方法 接下来得实现过程如上一篇文章,改变父类为UITab ...
- C++文件读写之对象的读写
这里以一个简单的学生信息管理系统为例. 首先是对象的建立,包括姓名,学号,成绩,学分,等 如下: 这里面包括两个子对象, class Student { public: Student() :scor ...
- RSA进阶之共模攻击
适用场景: 同一个n,对相同的m进行了加密,e取值不一样. e1和e2互质,gcd(e1,e2)=1 如果满足上述条件,那么就可以在不分解n的情况下求解m 原理 复杂的东西简单说: 如果gcd(e1, ...
- 菜鸟之路——Linux基础::计算机网络基础,Linux常用系统命令,Linux用户与组权限
最近又重新安排了一下我的计划.准备跟着老男孩的教程继续学习,感觉这一套教程讲的很全面,很详细.比我上一套机器学习好的多了. 他的第一阶段是Python基础,第二阶段是高等数学基础,主要将机器学习和深度 ...