Linear Algebra - Determinant(几何意义)
二阶行列式的几何意义
二阶行列式 \(D = \begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix} = a_1b_2 - a_2b_1\) 的几何意义是以向量 \(\vec a = (a_1, a_2), \vec b = (b_1, b_2)\) 为邻边的平行四边形的有向面积。
Figure 1. 二阶行列式的几何意义
根据以上条件,知四边形的面积 \(S(\vec a, \vec b) = ab \sin{<\vec a, \vec b>}\)
其中,\(a = \sqrt{a_1^2 + a_2^2}\) , \(b = \sqrt{b_1^2 + b_2^2}\) ,
\(\sin{<\vec a, \vec b>} = \sin{(\alpha - \beta)} = \sin{\alpha}\cos{\beta} - \cos{\alpha}\sin{\beta} = \frac{b_2}{b} \frac{a_1}{a} - \frac{b_1}{b} \frac{a_2}{b} = \frac{a_1b_2 - a_2b_1}{ab}\)
整理,得 \(ab \sin{<\vec a, \vec b>} = a_1b_2 - a_2b_1\)
而 \(\begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix} = a_1b_2 - a_2b_1\)
所以
\[
\begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix} = S(\vec a, \vec b)
\]
三阶行列式的几何意义
三行列式是其行向量或列向量所张成的平行六面体的有向体积。
Figure 2. 三阶行列式的几何意义
Linear Algebra - Determinant(几何意义)的更多相关文章
- Linear Algebra - Determinant(基础)
1. 行列式的定义 一阶行列式: \[ \begin{vmatrix} a_1 \end{vmatrix} = a_1 \] 二阶行列式: \[ \begin{vmatrix} a_{11} & ...
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- Python Linear algebra
Linear algebra 1.模块文档 NAME numpy.linalg DESCRIPTION Core Linear Algebra Tools ---------------------- ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- Linear Algebra From Data
Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一 ...
- 算法库:基础线性代数子程序库(Basic Linear Algebra Subprograms,BLAS)介绍
调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这 ...
- Here’s just a fraction of what you can do with linear algebra
Here’s just a fraction of what you can do with linear algebra The next time someone wonders what the ...
- cdoj793-A Linear Algebra Problem
http://acm.uestc.edu.cn/#/problem/show/793 A Linear Algebra Problem Time Limit: 3000/1000MS (Java/Ot ...
- 个案排秩 Rank (linear algebra) 秩 (线性代数)
非叫“秩”不可,有秩才有解_王治祥_新浪博客http://blog.sina.com.cn/s/blog_8e7bc4f801012c23.html 我在一个大学当督导的时候,一次我听一位老师给学生讲 ...
随机推荐
- Java分支循环结构
一.Java分支结构 1.if语句:一个 if 语句包含一个布尔表达式和一条或多条语句. if 语句的用语法如下: if(布尔表达式){ 如果布尔表达式为true将执行的语句 } public c ...
- redis安装包下载
redis linux版安装包下载地址 http://download.redis.io/releases/
- node js 安装.node-gyp/8.9.4 权限 无法访问
WARN EACCES user "root" does not have permission to access the dev dir "/root/.jenkin ...
- IOS UIlabel 、UIButton添加下划线
1.给UILabel 添加下划线 UILabel *label = [[UILabel alloc] initWithFrame:CGRectMake(, , , )]; label.backgrou ...
- property 中的strong 与weak
strong关键字与retain关似,用了它,引用计数自动+1,用实例更能说明一切 @property (nonatomic, strong) NSString *string1; @property ...
- em、pt、px和百分比
浏览器默认的字体大小为100%=16px=12pt=1em px像素(Pixel):是固定大小的单元.相对长度单位.像素px是相对于显示器屏幕分辨率而言的.一个像素等于电脑屏幕上的一个点(是你屏幕分辨 ...
- CentOS已经安装命令,但提示找不到
今天在虚机上装了个CENTOS.装好后,好多命令都提示找不到,如tcpdump.arp.ifconfig.查看安装包,都已经安装过. ------------无敌分割线------------- # ...
- python二叉树的遍历,递归和非递归及相关其它
# encoding=utf-8class node(object): def __init__(self,data,left=None,right=None): self.data = data s ...
- 搭建LoadRunner中的场景(二) 集合点
Rendezvous: 这个单词来自于法语,军队集合的意思.LoadRunner中是指各虚拟用户在同一时刻完成指定的操作. 一. 集合点设置步骤 1. 在脚本中需要测试并发性能的操作之前加入集合点. ...
- &&、||和&、|的区别
1. && .|| 和 &.| 都是逻辑运算符,前两个 与后两个的区别就在于 &&.|| 有"短路"现象,而& .| 则没有. 例如 ...