题意:

给你一个n和一个数 digit ,问你最少需要多少个 digit 使得整除于n;

思路:

同余定理(a+b)%n=(a%n+b%n)%n;

(m%n+m%n*10+m%n*100+m%n*1000......)%n==0;

temp=m%n;

temp=(temp*10+m)%n=(10*m%n+m%n)%n;

temp=(temp*10+m)%n=(10*10*m%n+10*m%n+m)%n;

if(temp==0)

满足;

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main()
{
int T,cas=1;
int n,m,cnt,temp;
scanf("%d",&T); while(T--)
{
cnt=1;
scanf("%d%d",&n,&m);
temp=m%n;
while(temp)
{
temp=(temp*10+m)%n;
cnt++;
}
printf("Case %d: %d\n",cas++,cnt);
}
return 0;
}

lightoj 1078【同余定理】的更多相关文章

  1. Light oj 1214-Large Division (同余定理)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1214 题意很好懂,同余定理的运用,要是A数被B数整除,那么A%B等于0.而A很大,那我 ...

  2. 如何运用同余定理求余数【hdoj 1212 Big Number【大数求余数】】

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  3. hdu 4704 同余定理+普通快速幂

    此题往后推几步就可找到规律,从1开始,答案分别是1,2,4,8,16.... 这样就可以知道,题目的目的是求2^n%Mod的结果.....此时想,应该会想到快速幂...然后接着会发现,由于n的值过大, ...

  4. OJ随笔——【1088-N!】——同余定理

    题目如下: Description 请求N!(N<=10000),输出结果对10007取余输入每行一个整数n,遇到-1结束.输出每行一个整数,为对应n的运算结果.   Sample Input ...

  5. [ACM] POJ 2635 The Embarrassed Cryptographer (同余定理,素数打表)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11978   A ...

  6. 算法训练 K好数 数位DP+同余定理

    思路:d(i,j)表示以i开头,长度为j的K好数的个数,转移方程就是 for(int u = 0; u < k; ++u) { int x = abs(i - u); if(x == 1) co ...

  7. poj1061-青蛙的约会-(贝祖定理+扩展欧几里得定理+同余定理)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:132162   Accepted: 29199 Descripti ...

  8. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU1212 Big Number 【同余定理】

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

随机推荐

  1. 高性能MySQL(四)

    Schema与数据类型优化 需要优化的数据类型 更小的通常更好 简单就好 尽量避免NULL 整数类型 存储整数,有TINYINT.SMALLINT.MEDIUMINT.INT.BIGINT,分别使用8 ...

  2. php源码zend_do_begin_namespace函数详解

    version:5.6.21 file:Zend/zend_compile.c line:7055-7152 void zend_do_begin_namespace(const znode *nam ...

  3. 2016/07/07 mymps(蚂蚁分类信息/地方门户系统)

    mymps(蚂蚁分类信息/地方门户系统)是一款基于php mysql的建站系统.为在各种服务器上架设分类信息以及地方门户网站提供完美的解决方案. mymps,整站生成静态,拥有世界一流的用户体验,卓越 ...

  4. 2015年度新增开源软件排名TOP 100,EasyDarwin开源流媒体服务器排名第17

    本榜单包含 2015 年开源中国新收录的 5977 款开源软件中,根据软件本身的关注度.活跃程度进行排名前 100 名的软件.从这份榜单中或许可以了解到最新业界的趋势. 榜单详情:http://www ...

  5. MySql in子句 效率低下优化(亲测有效,从200秒变1秒)

    MySql in子句 效率低下优化 背景: 更新一张表中的某些记录值,更新条件来自另一张含有200多万记录的表,效率极其低下,耗时高达几分钟. update clear_res set candele ...

  6. [自动化平台系列] - 初次使用 Macaca-前端自动化测试(2)

    接一下来讲一讲api的使用   http://macacajs.github.io/macaca-wd/api/ var _config = { //本程序的host host: 'http://te ...

  7. Codeforces Round #383 (Div. 2) B. Arpa’s obvious problem and Mehrdad’s terrible solution —— 异或

    题目链接:http://codeforces.com/contest/742/problem/B B. Arpa's obvious problem and Mehrdad's terrible so ...

  8. 存储过程系列四: decode函数使用学习

    Oracle 中 decode 函数用法 含义解释:decode(条件,值1,返回值1,值2,返回值2,...值n,返回值n,缺省值) 该函数的含义如下:IF 条件=值1 THEN RETURN(翻译 ...

  9. innerText和innerHTML

    起因 由于公司的项目以前不考虑浏览器的兼容性问题,当时只考虑ie8浏览器,封装的控件也只针对ie8,我后面的做的时候,也就针对ie8,最近发现,封装的日期控件,在firefox竟然没法显示出来,去看J ...

  10. 在Eclipse配置自动提示

    1.我们打开eclipse,选择菜单栏的window选项 2.点击Windows,选择下拉菜单里面的preferences选项,之后在打开的对话框的左侧找到Java选项 3.之后点击Java选项,选择 ...