Tarjan 详解
Tarjan 算法
一.算法简介
Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度。
我们定义:
如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。
例如:在上图中,{1 , 2 , 3 , 4 } , { 5 } , { 6 } 三个区域可以相互连通,称为这个图的强连通分量。
Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
再Tarjan算法中,有如下定义。
DFN[ i ] : 在DFS中该节点被搜索的次序(时间戳)
LOW[ i ] : 为i或i的子树能够追溯到的最早的栈中节点的次序号
当DFN[ i ]==LOW[ i ]时,为i或i的子树可以构成一个强连通分量。
二.算法图示
以1为Tarjan 算法的起始点,如图
顺次DFS搜到节点6
回溯时发现LOW[ 5 ]==DFN[ 5 ] , LOW[ 6 ]==DFN[ 6 ] ,则{ 5 } , { 6 } 为两个强连通分量。回溯至3节点,拓展节点4.
拓展节点1 , 发现1再栈中更新LOW[ 4 ],LOW[ 3 ] 的值为1
回溯节点1,拓展节点2
自此,Tarjan Algorithm 结束,{1 , 2 , 3 , 4 } , { 5 } , { 6 } 为图中的三个强连通分量。
不难发现,Tarjan Algorithm 的时间复杂度为O(E+V).
三.算法模板
void Tarjan ( int x ) {
dfn[ x ] = ++dfs_num ;
low[ x ] = dfs_num ;
vis [ x ] = true ;//是否在栈中
stack [ ++top ] = x ;
for ( int i=head[ x ] ; i!= ; i=e[i].next ){
int temp = e[ i ].to ;
if ( !dfn[ temp ] ){
Tarjan ( temp ) ;
low[ x ] = gmin ( low[ x ] , low[ temp ] ) ;
}
else if ( vis[ temp ])low[ x ] = gmin ( low[ x ] , dfn[ temp ] ) ;
}
if ( dfn[ x ]==low[ x ] ) {//构成强连通分量
vis[ x ] = false ;
color[ x ] = ++col_num ;//染色
while ( stack[ top ] != x ) {//清空
color [stack[ top ]] = col_num ;
vis [ stack[ top-- ] ] = false ;
}
top -- ;
}
}
Tarjan 详解的更多相关文章
- LCA离线算法Tarjan详解
离线算法也就是需要先把所有查询给保存下来,最后一次输出结果. 离线算法是基于并查集实现的,首先就是初始化P[i] = i. 接下来对于每个点进行dfs: ①首先判断是否有与该点有关的查询,如果当前该点 ...
- Tarjan算法详解
Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...
- Tarjan求有向图强连通详解
Tarjan求有向图强连通详解 注*该文章为转发,原文出处已经不得而知 :first-child { margin-top: 0; } blockquote > :last-child { ma ...
- Tarjan 算法详解
一个神奇的算法,求最大连通分量用O(n)的时间复杂度,真实令人不可思议. 废话少说,先上题目 题目描述: 给出一个有向图G,求G连通分量的个数和最大连通分量. 输入: n,m,表示G有n个点,m条边 ...
- trie字典树详解及应用
原文链接 http://www.cnblogs.com/freewater/archive/2012/09/11/2680480.html Trie树详解及其应用 一.知识简介 ...
- 算法笔记--sg函数详解及其模板
算法笔记 参考资料:https://wenku.baidu.com/view/25540742a8956bec0975e3a8.html sg函数大神详解:http://blog.csdn.net/l ...
- Linq之旅:Linq入门详解(Linq to Objects)
示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...
- 架构设计:远程调用服务架构设计及zookeeper技术详解(下篇)
一.下篇开头的废话 终于开写下篇了,这也是我写远程调用框架的第三篇文章,前两篇都被博客园作为[编辑推荐]的文章,很兴奋哦,嘿嘿~~~~,本人是个很臭美的人,一定得要截图为证: 今天是2014年的第一天 ...
- EntityFramework Core 1.1 Add、Attach、Update、Remove方法如何高效使用详解
前言 我比较喜欢安静,大概和我喜欢研究和琢磨技术原因相关吧,刚好到了元旦节,这几天可以好好学习下EF Core,同时在项目当中用到EF Core,借此机会给予比较深入的理解,这里我们只讲解和EF 6. ...
随机推荐
- SQL依据特殊符号分批截取字符串(案例)
网上的问题: 下面是Insus.NET的解决办法,仅供参考. )) INSERT INTO #temp([Source]) VALUES ('2012-04-27 16:49:24$1$2'), (' ...
- MS SQL读取JSON数据
前面有一篇<在SQL中直接把查询结果转换为JSON数据>https://www.cnblogs.com/insus/p/10905566.html,是把table转换为json. 现反过来 ...
- linux文件重命名
rename 命令用字符串替换的方式批量改变文件名. 语法 rename(参数) 参数 原字符串:将文件名需要替换的字符串: 目标字符串:将文件名中含有的原字符替换成目标字符串: 文件:指定要改变文件 ...
- VMware Workstation “无法连接 MKS: 套接字连接尝试次数太多;正在放弃。” 解决方法【转】
今天和往常一样打开电脑,打开VMware Workstation,打开其中的一台虚拟机,以前都是这么打开没有问题,今天打开虚拟机突然提示“无法连接 MKS: 套接字连接尝试次数太多:正在放弃.”. 经 ...
- P5346 【XR-1】柯南家族
题目地址:P5346 [XR-1]柯南家族 Q:官方题解会咕么? A:不会!(大雾 题解环节 首先,我们假设已经求出了 \(n\) 个人聪明程度的排名. \(op = 1\) 是可以 \(O(1)\) ...
- RPC00
https://mp.weixin.qq.com/s?__biz=MjM5ODI5Njc2MA==&mid=2655824821&idx=1&sn=50fa59165aedc8 ...
- Codeforces #564div2 C(模拟)
要点 没想到的一点是,对于堆里的某牌,最好情况是它出来时后边都准备就绪了,答案是\(p[i] + (n - i + 1)\),所有的这个取最大的即可 一发结束的情况先特判一下 const int ma ...
- 2017百度之星程序设计大赛 - 复赛 Arithmetic of Bomb
http://acm.hdu.edu.cn/showproblem.php?pid=6144 解法:一个简单的模拟 #include <bits/stdc++.h> using names ...
- 关于使用rancher部署k8s集群的一些小问题的解决
问题一: 在rancher的ui上,不能创建k8s的master节点的高可用集群.创建k8s集群,添加节点的时候,可以添加多个master,但是多个master又没有高可用,只要其中一个出问题了,那么 ...
- 《从0到1学习Flink》—— Data Source 介绍
前言 Data Sources 是什么呢?就字面意思其实就可以知道:数据来源. Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集.历史的数据集:也可以用来做流处理,即实时的处理些 ...