sppnet不讲了,懒得写。。。直接上代码

 from math import floor, ceil
import torch
import torch.nn as nn
import torch.nn.functional as F class SpatialPyramidPooling2d(nn.Module):
r"""apply spatial pyramid pooling over a 4d input(a mini-batch of 2d inputs
with additional channel dimension) as described in the paper
'Spatial Pyramid Pooling in deep convolutional Networks for visual recognition'
Args:
num_level:
pool_type: max_pool, avg_pool, Default:max_pool
By the way, the target output size is num_grid:
num_grid = 0
for i in range num_level:
num_grid += (i + 1) * (i + 1)
num_grid = num_grid * channels # channels is the channel dimension of input data
examples:
>>> input = torch.randn((1,3,32,32), dtype=torch.float32)
>>> net = torch.nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=3,stride=1),\
nn.ReLU(),\
SpatialPyramidPooling2d(num_level=2,pool_type='avg_pool'),\
nn.Linear(32 * (1*1 + 2*2), 10))
>>> output = net(input)
""" def __init__(self, num_level, pool_type='max_pool'):
super(SpatialPyramidPooling2d, self).__init__()
self.num_level = num_level
self.pool_type = pool_type def forward(self, x):
N, C, H, W = x.size()
for i in range(self.num_level):
level = i + 1
kernel_size = (ceil(H / level), ceil(W / level))
stride = (ceil(H / level), ceil(W / level))
padding = (floor((kernel_size[0] * level - H + 1) / 2), floor((kernel_size[1] * level - W + 1) / 2)) if self.pool_type == 'max_pool':
tensor = (F.max_pool2d(x, kernel_size=kernel_size, stride=stride, padding=padding)).view(N, -1)
else:
tensor = (F.avg_pool2d(x, kernel_size=kernel_size, stride=stride, padding=padding)).view(N, -1) if i == 0:
res = tensor
else:
res = torch.cat((res, tensor), 1)
return res
def __repr__(self):
return self.__class__.__name__ + '(' \
+ 'num_level = ' + str(self.num_level) \
+ ', pool_type = ' + str(self.pool_type) + ')' class SPPNet(nn.Module):
def __init__(self, num_level=3, pool_type='max_pool'):
super(SPPNet,self).__init__()
self.num_level = num_level
self.pool_type = pool_type
self.feature = nn.Sequential(nn.Conv2d(3,64,3),\
nn.ReLU(),\
nn.MaxPool2d(2),\
nn.Conv2d(64,64,3),\
nn.ReLU())
self.num_grid = self._cal_num_grids(num_level)
self.spp_layer = SpatialPyramidPooling2d(num_level)
self.linear = nn.Sequential(nn.Linear(self.num_grid * 64, 512),\
nn.Linear(512, 10))
def _cal_num_grids(self, level):
count = 0
for i in range(level):
count += (i + 1) * (i + 1)
return count def forward(self, x):
x = self.feature(x)
x = self.spp_layer(x)
print(x.size())
x = self.linear(x)
return x if __name__ == '__main__':
a = torch.rand((1,3,64,64))
net = SPPNet()
output = net(a)
print(output)

利用pytorch复现spatial pyramid pooling层的更多相关文章

  1. SPP(Spatial Pyramid Pooling)详解

    一直对Fast RCNN中ROI Pooling层不解,不同大小的窗口输入怎么样才能得到同样大小的窗口输出呢,今天看到一篇博文讲得挺好的,摘录一下,方便查找. Introduction 在一般的CNN ...

  2. 空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)

    想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对 ...

  3. 空间金字塔池化(Spatial Pyramid Pooling,SPP)

    基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一.相关理论 本篇博文 ...

  4. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...

  5. 深度学习论文翻译解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神 ...

  6. Spatial pyramid pooling (SPP)-net (空间金字塔池化)笔记(转)

    在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Net ...

  7. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  8. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  9. SPP Net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)论文理解

    论文地址:https://arxiv.org/pdf/1406.4729.pdf 论文翻译请移步:http://www.dengfanxin.cn/?p=403 一.背景: 传统的CNN要求输入图像尺 ...

随机推荐

  1. substring和substr,slice和splice

    substring 和 substr 这二货都是针对字符串而言的,且都是返回一个副本,而不是在原字符串上直接操作. 上代码: var str = '0123456789'; console.log( ...

  2. [Luogu1343]地震逃生 最大流

    题目链接:https://www.luogu.org/problem/show?pid=1343 dinic跑最大流. #include<cstdio> #include<cstri ...

  3. arcgis jsapi接口入门系列(3):各种类型的图层添加

    这里说的tomcat切片,是指arcgis server切片后,把切片图片文件用tomcat发布(其他任意web服务器发布都行) //添加tomcat切片图层 addTomcatTileLayer: ...

  4. cacti图形字符乱码

    环境:最小化centos+cacti 问题:图形监控界面字符全部乱码,如下图 解决方法:从windows下面拷贝一个ttf文件到/usr/share/fonts下面,刷新页面,字符就正常显示了.

  5. PHP 哈希表碰撞攻击

    理想情况下哈希表插入和查找操作的时间复杂度均为O(1),任何一个数据项可以在一个与哈希表长度无关的时间内计算出一个哈希值(key),然后在常量时间内定位到一个桶(术语bucket,表示哈希表中的一个位 ...

  6. 自学Spring Boot

    简介: Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配 ...

  7. 上下文 xx

    上下文,就是指在程序中的某个位置,可以访问到的所有资源的总和. 具体说来,在程序中资源可能是一个变量.一个常量.一个类的引用等等.

  8. flex常用属性

    <1>align-items: 垂直方向的对齐方式 align-items: stretch(拉伸,布满父容器) | center(垂直居中) | flex-start(上对齐) | fl ...

  9. 005 String s = "Hello";s = s + " world!";执行这两行代码执行后,原始的 String 对象中的内容到底变了没有?

    原始的String对象中的内容没有改变成“Hello world”. 1.原因 因为在Java中String类被设计成不可改变的类,所以String类的所有对象都是不可变的.第一句代码中,s(存储在栈 ...

  10. (5)JSTL的xml标签库

    Jstl的XML标签库 JSTL提供了操作xml文件的标签库,使用xml标签库可以省去使用Dom和SAX标签库的繁琐,能轻松的读取xml文件的内容. <%@ taglib uri="h ...