BZOJ4872 [六省联考2017]分手是祝愿 【期望dp】
题目
Zeit und Raum trennen dich und mich.
时空将你我分开。B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为
从 1 到 n 的正整数。每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏
的目标是使所有灯都灭掉。但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被
改变,即从亮变成灭,或者是从灭变成亮。B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机
操作一个开关,直到所有灯都灭掉。这个策略需要的操作次数很多, B 君想到这样的一个优化。如果当前局面,
可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个
策略显然小于等于 k 步)操作这些开关。B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使
用操作次数最小的操作方法)的操作次数的期望。这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定
是整数,所以他只需要知道这个整数对 100003 取模之后的结果。
输入格式
第一行两个整数 n, k。
接下来一行 n 个整数,每个整数是 0 或者 1,其中第 i 个整数表示第 i 个灯的初始情况。
1 ≤ n ≤ 100000, 0 ≤ k ≤ n;
输出格式
输出一行,为操作次数的期望乘以 n 的阶乘对 100003 取模之后的结果。
输入样例
4 0
0 0 1 1
输出样例
512
题解
为使操作次数最少,因为小的不能影响大的,那么从大的开始关闭,要关就一定关,因为往前没有灯可以关闭当前灯,所以是正确的
这样一枚举就是\(O(nlogn)\),预处理出了初始局面所需步数
然后就期望dp
期望dp一般设为当前状态到目标状态或者下一个状态的期望步数
我们设\(f[i]\)表示还剩\(i\)个操作就完成的情况下,到剩余\(i - 1\)个操作就完成所需要的操作期望次数
我们有\(\frac{i}{n}\)的概率操作正确
另有\(\frac{n - i}{n}\)的概率操作失败,此时我们就相当于多了一个操作撤回这次失败,就回到了\(f[i + 1]\)
所以我们有
\]
化简得
\]
递推一下就可以算出\(f[i]\)了
由于还剩\(k\)步开始直接操作\(k\)步结束,我们令\(f[1...k] = 1\)
如果初始局面需要步数为\(m\)
\]
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000,P = 100003;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int f[maxn],shut[maxn],a[maxn],inv[maxn],n,k,need;
int main(){
n = read(); k = read();
REP(i,n) a[i] = read();
for (int i = n; i; i--){
for (int j = i + i; j <= n; j += i)
if (shut[j]) a[i] ^= 1;
if (a[i]) shut[i] = true,need++;
}
inv[0] = inv[1] = 1;
for (int i = 2; i <= n; i++) inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
f[n] = 1;
for (int i = n - 1; i; i--){
f[i] = (1ll * n * inv[i] % P + 1ll * (n - i) * inv[i] % P * f[i + 1] % P) % P;
}
for (int i = 1; i <= k; i++) f[i] = 1;
int ans = 0;
for (int i = 1; i <= need; i++) ans = (ans + f[i]) % P;
for (int i = 1; i <= n; i++) ans = 1ll * ans * i % P;
printf("%d\n",ans);
return 0;
}
BZOJ4872 [六省联考2017]分手是祝愿 【期望dp】的更多相关文章
- [BZOJ4872][六省联考2017]分手是祝愿(期望DP)
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 516 Solved: 342[Submit][Statu ...
- [六省联考2017]分手是祝愿 期望DP
表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...
- P3750 [六省联考2017]分手是祝愿 期望DP
\(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...
- [六省联考2017]分手是祝愿——期望DP
原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...
- bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿
http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关 ...
- [BZOJ4872][六省联考2017]分手是祝愿
BZOJ Luogu sol 首先发现肯定有解,又因为每个位置至多操作一次,所以最优解一定是在\([0,n]\)之间 有一种可以在\(O(\sum_{i=1}^{n}\lfloor\frac{n}{i ...
- BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description ...
- [bzoj4872] [洛谷P3750] [六省联考2017] 分手是祝愿
Description Zeit und Raum trennen dich und mich. 时空将你我分开. \(B\) 君在玩一个游戏,这个游戏由 \(n\) 个灯和 \(n\) 个开关组成, ...
- luoguP3750 [六省联考2017]分手是祝愿 概率期望DP + 贪心
...........真的神状态了,没办法去想的状态................... 考试的时候选择$50$分贪心+$15$分状压吧,别的点就放弃算了........ 令$f[i]$表示从最小步 ...
随机推荐
- C# 运用StreamReader类和StreamWriter类实现文件的读写操作
对文件的读写操作应该是最重要的文件操作,System.IO命名空间为我们提供了诸多文件读写操作类,在这里我要向大家介绍最常用也是最基本的StreamReader类和StreamWriter类.从这两个 ...
- java: 非法字符: \65279
IDEA导入项目后,编译的时候出现Error:(1, 1) java: 非法字符: \65279: 修改:找到编译报错的文件,用Notepad++工具,以UTF-8无BOM格式编码保存,然后重新编译即 ...
- windows下安装Linux虚拟机
一.下载ios 下载网址:https://wwww.centos.org 选择一个.iso下载 二.安装一个vmware workstation或者Hyper-v的虚拟机 2.1.Hyper-v 2. ...
- 洛谷P1164小A点菜
这也是一道01背包的题 用的方法比较的巧妙.这个动态规划相当于反过来做的,自己理解就知道了.代码很短 #include<bits/stdc++.h> using namespace std ...
- awk截取指定字段
#!/bin/bash #好多地方可以优化,先记录下,便于以后使用 dir="/logs/$1"file="/logs/$1/requests.log"if [ ...
- Shell脚本使用汇总整理——mysql数据库5.7.8以后备份脚本
Shell脚本使用汇总整理——mysql数据库5.7.8以后备份脚本 Shell脚本使用的基本知识点汇总详情见连接: https://www.cnblogs.com/lsy-blogs/p/92234 ...
- 【CodeBase】通过层级键在多维数组中获取目标值
通过层级键在多维数组中获取目标值 /* *Author : @YunGaZeon *Date : 2017.08.09 *param data : Data Array *param keys : K ...
- 【面试】一篇文章帮你彻底搞清楚“I/O多路复用”和“异步I/O”的前世今生
曾经的VIP服务 在网络的初期,网民很少,服务器完全无压力,那时的技术也没有现在先进,通常用一个线程来全程跟踪处理一个请求.因为这样最简单. 其实代码实现大家都知道,就是服务器上有个ServerSoc ...
- Spring Boot 要点--启动类和热部署
spring boot需要一个启动类 比如 package com.tianmaying; import org.springframework.boot.SpringApplication; imp ...
- JSP自定义tag控件标签
JSP支持自定tag的方法,那就是直接讲JSP代码保存成*.tag或者*.tagx的标签定义文件.tag和tagx文件不仅支持经典jsp代码,各种标签模版代码,还支持xml样式的jsp指令代码. 按照 ...