题目

Zeit und Raum trennen dich und mich.

时空将你我分开。B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为

从 1 到 n 的正整数。每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏

的目标是使所有灯都灭掉。但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被

改变,即从亮变成灭,或者是从灭变成亮。B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机

操作一个开关,直到所有灯都灭掉。这个策略需要的操作次数很多, B 君想到这样的一个优化。如果当前局面,

可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个

策略显然小于等于 k 步)操作这些开关。B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使

用操作次数最小的操作方法)的操作次数的期望。这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定

是整数,所以他只需要知道这个整数对 100003 取模之后的结果。

输入格式

第一行两个整数 n, k。

接下来一行 n 个整数,每个整数是 0 或者 1,其中第 i 个整数表示第 i 个灯的初始情况。

1 ≤ n ≤ 100000, 0 ≤ k ≤ n;

输出格式

输出一行,为操作次数的期望乘以 n 的阶乘对 100003 取模之后的结果。

输入样例

4 0

0 0 1 1

输出样例

512

题解

为使操作次数最少,因为小的不能影响大的,那么从大的开始关闭,要关就一定关,因为往前没有灯可以关闭当前灯,所以是正确的

这样一枚举就是\(O(nlogn)\),预处理出了初始局面所需步数

然后就期望dp

期望dp一般设为当前状态到目标状态或者下一个状态的期望步数

我们设\(f[i]\)表示还剩\(i\)个操作就完成的情况下,到剩余\(i - 1\)个操作就完成所需要的操作期望次数

我们有\(\frac{i}{n}\)的概率操作正确

另有\(\frac{n - i}{n}\)的概率操作失败,此时我们就相当于多了一个操作撤回这次失败,就回到了\(f[i + 1]\)

所以我们有

\[f[i] = \frac{i}{n} + \frac{n - i}{n} * (1 + f[i + 1] + f[i])
\]

化简得

\[f[i] = \frac{n}{i} + \frac{n - i}{i} * f[i + 1]
\]

递推一下就可以算出\(f[i]\)了

由于还剩\(k\)步开始直接操作\(k\)步结束,我们令\(f[1...k] = 1\)

如果初始局面需要步数为\(m\)

\[ans = \sum\limits_{i = 1}^{m} f[i]
\]

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000,P = 100003;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int f[maxn],shut[maxn],a[maxn],inv[maxn],n,k,need;
int main(){
n = read(); k = read();
REP(i,n) a[i] = read();
for (int i = n; i; i--){
for (int j = i + i; j <= n; j += i)
if (shut[j]) a[i] ^= 1;
if (a[i]) shut[i] = true,need++;
}
inv[0] = inv[1] = 1;
for (int i = 2; i <= n; i++) inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
f[n] = 1;
for (int i = n - 1; i; i--){
f[i] = (1ll * n * inv[i] % P + 1ll * (n - i) * inv[i] % P * f[i + 1] % P) % P;
}
for (int i = 1; i <= k; i++) f[i] = 1;
int ans = 0;
for (int i = 1; i <= need; i++) ans = (ans + f[i]) % P;
for (int i = 1; i <= n; i++) ans = 1ll * ans * i % P;
printf("%d\n",ans);
return 0;
}

BZOJ4872 [六省联考2017]分手是祝愿 【期望dp】的更多相关文章

  1. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  2. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

  3. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  4. [六省联考2017]分手是祝愿——期望DP

    原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...

  5. bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿

    http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关 ...

  6. [BZOJ4872][六省联考2017]分手是祝愿

    BZOJ Luogu sol 首先发现肯定有解,又因为每个位置至多操作一次,所以最优解一定是在\([0,n]\)之间 有一种可以在\(O(\sum_{i=1}^{n}\lfloor\frac{n}{i ...

  7. BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description ...

  8. [bzoj4872] [洛谷P3750] [六省联考2017] 分手是祝愿

    Description Zeit und Raum trennen dich und mich. 时空将你我分开. \(B\) 君在玩一个游戏,这个游戏由 \(n\) 个灯和 \(n\) 个开关组成, ...

  9. luoguP3750 [六省联考2017]分手是祝愿 概率期望DP + 贪心

    ...........真的神状态了,没办法去想的状态................... 考试的时候选择$50$分贪心+$15$分状压吧,别的点就放弃算了........ 令$f[i]$表示从最小步 ...

随机推荐

  1. UsbKey开发

    http://slf-1983.blog.163.com/blog/static/2990236320121113113955119/

  2. SOA架构设计案例分析

    转载自:https://www.jdon.com/soa.html 首先Martin Fowler提出SOA歧义Service Oriented Ambiguity,认为"什么是SOA&qu ...

  3. css分层,实现遮罩底层弹出新窗口里可以操作,最下层能看到单不能操作

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. 安装Tesseract

    下载网站 https://digi.bib.uni-mannheim.de/tesseract/

  5. Centos 6版本Device eth0 does not seem to be present,delaying initialization.故障处理

    1.1  故障现象 2019年06月14日晚上,公司项目组说有台业务服务器连接不上,比较着急,我通过vpn拨入的方式远程登录到管理控制台查看发现网卡没有获取到IP地址,我尝试重启来重新启动,重启的时候 ...

  6. centos6.9系统安装

    1. 选择系统及下载 CentOS 5.x CentOS 6.x 50% 6.9 CentOS 7.x 50% 7.2 centos 6.9 centos 7. 最新版 https://wiki.ce ...

  7. 51nod 1202 不同子序列个数(计数DP)

    1202 子序列个数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40      子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a ...

  8. [原]sencha touch之panel和tabpanel

    最近在弄senchatouch的项目,所以边学习边开发,边记录,直接记录下test code如下: Panel: Ext.application({ name:'itKingApp', launch: ...

  9. Java面向对象---泛型

    概念 泛型可以解决数据类型的安全问题,主要原理是在类声明的时候通过一个标识表示类中某个属性的类型或者是某个方法的返回值及参数类型. 格式 访问权限 class 类名称<泛型,泛型...>{ ...

  10. TCP/IP网络编程之多进程服务端(一)

    进程概念及应用 我们知道,监听套接字会有一个等待队列,里面存放着不同客户端的连接请求,如果有一百个客户端,每个客户端的请求处理是0.5s,第一个客户端当然不会不满,但第一百个客户端就会有相当大的意见了 ...