hdu 5930 GCD 线段树上二分/ 强行合并维护信息
from NOIP2016模拟题28
题目大意
n个点的序列,权值\(<=10^6\)
q个操作
1.单点修改
2.求所有区间gcd中,不同数个数
分析
1.以一个点为端点,向左或向右的gcd种数都只有\(\log Maxval\)种且收敛很快
1.权值较小可以用桶统计一个gcd的出现次数
做法1(正解)线段树上二分
\(n \log n\)递推预处理出以每个点为右端点的gcd
顺便记录每种gcd出现的最左位置,用于统计数量,更新到桶里可以用一颗线段树维护单点修改,区间gcd
考虑一次修改x(可以看成一次删除+一次插入)
影响的只是包含x的区间
根据分析1,我们在线段树上二分
搞出x向左的\(\log\)个gcd及出现的次数,和向右的....
因为左边某个区间的所有数和右边某个区间的所有数两两gcd都相同
\(\log^2\)更新答案
复杂度\(\log^2\),再加个gcd 的log
做法2 线段树强行维护
每个点维护3个信息
到左的log个gcd(tl)
到右的log个gcd(tr)
整个区间的gcd(all)
pushup的时候更新tl,tr,O(\(\log\))
左儿子tr和右儿子tl弄在一起gcd一下,O(\(\log^2\)),gcd还有一个\(\log\)
对于删除,点x到根上统计的信息都无效了,直接删掉
在插入的时候重新统计
复杂度\(\log^3\),再加个gcd 的log
比赛时强行意识流,求tl,tr的时候不顺带求出出现次数直接当成1
然后现在想想好像并不会错→_→
solution
做法1
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
const int M=50007;
const int N=1000007;
typedef long long LL;
inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
int n,m;
int a[M];
int ans;
LL v[N];
void add(int d,LL num){
if(v[d]==0)ans++;
v[d]+=num;
}
void del(int d,LL num){
v[d]-=num;
if(v[d]==0)ans--;
}
int notprime[N];
int prime[N],cnt;
int p[N];//p[i]表示i因数中最小的素数
int sn=1000;
int split[N][3];
int g[1007][1007];
int gcd(int x,int y){
int ans=1,i,d;
for(i=0;i<3;i++){
if(split[x][i]<=sn) d=g[split[x][i]][y%split[x][i]];
else d=(y%split[x][i]==0)?split[x][i]:1;
ans*=d;
y/=d;//避免算重
}
return ans;
}
void init_gcd(){
notprime[1]=1;
int i,j,d;
for(i=2;i<N;i++){
if(!notprime[i]){
prime[++cnt]=i;
p[i]=i;
}
for(j=1;j<=cnt;j++){
if((LL)prime[j]*i>=N) break;
d=prime[j]*i;
notprime[d]=1;
p[d]=prime[j];
if(i%prime[j]==0) break;
}
}
split[1][0]=split[1][1]=split[1][2]=1;
for(i=2;i<N;i++){
memcpy(split[i],split[i/p[i]],sizeof(split[i/p[i]]));
if(split[i][0]*p[i]<=sn) split[i][0]*=p[i];
else if(split[i][1]*p[i]<=sn) split[i][1]*=p[i];
else split[i][2]*=p[i];
}
// gcd(0,0)=0 , gcd(0,x)=x
for(i=0;i<=sn;i++)
for(j=0;j<=i;j++){
if(!i||!j) g[i][j]=i|j;
else g[i][j]=g[j][i]=g[j][i%j];//j<=i
}
}
struct node{
int fir,d;
}q[57];
int tq=0;
bool cmp(node x,node y){
if(x.d==y.d) return x.fir<y.fir;
else return x.d<y.d;
}
int uni(int num){
int i,cnt=0;
for(i=1;i<=num;i++)
if(q[i].d!=q[i-1].d) q[++cnt]=q[i];
return cnt;
}
void init_ans(){
int i,j;
for(i=1;i<=n;i++){
for(j=1;j<=tq;j++) q[j].d=gcd(q[j].d,a[i]);
q[++tq].d=a[i];q[tq].fir=i;
sort(q+1,q+tq+1,cmp);
tq=uni(tq);
for(j=1;j<tq;j++) add(q[j].d,q[j+1].fir-q[j].fir);
add(q[tq].d,i+1-q[tq].fir);
}
}
int all[M<<2];
void pushup(int x){
all[x]=gcd(all[x<<1],all[x<<1|1]);
}
void build(int x,int l,int r){
if(l==r){
all[x]=a[l];
return;
}
int mid=l+r>>1;
build(x<<1,l,mid);
build(x<<1|1,mid+1,r);
pushup(x);
}
void update(int x,int l,int r,int to){
if(l==r){
all[x]=a[l];
return;
}
int mid=l+r>>1;
if(to<=mid) update(x<<1,l,mid,to);
else update(x<<1|1,mid+1,r,to);
pushup(x);
}
int getlf(int x,int l,int r,int tl,int tr,int G){
if(tl<=l&&r<=tr && all[x]%G==0) return 0;
if(l==r) return l;
int mid=l+r>>1,tp=0;
if(mid<tr) tp=getlf(x<<1|1,mid+1,r,tl,tr,G);
if(tl<=mid&&tp==0) tp=getlf(x<<1,l,mid,tl,tr,G);
return tp;
}
int getrt(int x,int l,int r,int tl,int tr,int &G){
if(tl<=l&&r<=tr && all[x]%G==0) return n+1;
if(l==r) return l;
int mid=l+r>>1,tp=n+1;
if(tl<=mid) tp=getrt(x<<1,l,mid,tl,tr,G);
if(mid<tr&&tp==n+1) tp=getrt(x<<1|1,mid+1,r,tl,tr,G);
return tp;
}
struct nnd{
int num,d;
nnd(int nn=0,int dd=0){num=nn;d=dd;}
}lf[57],rt[57];
int cl,cr;
void mdf(int x,int kd){
int l,r,tp,nw,i,j;
cl=cr=0;
l=1,r=x,nw=a[x];
while(l<=r){
tp=getlf(1,1,n,l,r,nw);
lf[++cl]=nnd(r-tp,nw);
if(tp!=0) nw=gcd(nw,a[tp]);
r=tp;
}
l=x,r=n,nw=a[x];
while(l<=r){
tp=getrt(1,1,n,l,r,nw);
rt[++cr]=nnd(tp-l,nw);
if(tp!=n+1) nw=gcd(nw,a[tp]);
l=tp;
}
for(i=1;i<=cl;i++)
for(j=1;j<=cr;j++){
if(kd==1) add(gcd(lf[i].d,rt[j].d),lf[i].num*rt[j].num);
else del(gcd(lf[i].d,rt[j].d),lf[i].num*rt[j].num);
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
n=rd(),m=rd();
int i,x,y;
for(i=1;i<=n;i++) a[i]=rd();
init_gcd();
init_ans();
build(1,1,n);
for(i=1;i<=m;i++){
x=rd(),y=rd();
mdf(x,-1);
a[x]=y;
update(1,1,n,x);
mdf(x,1);
printf("%d\n",ans);
}
return 0;
}
做法2
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
typedef long long LL;
using namespace std;
const int M=50007;
const int N=57;
inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
int n,m;
int val[M];
struct node{
int a[N];
};
node tl[M<<2],tr[M<<2];
int cl[M<<2],cr[M<<2],cp;
int all[M<<2];
LL num[1000007];
int ans;
int gcd(int x,int y){
while(y){
x%=y;
swap(x,y);
}
return x;
}
void add(int d){
if(num[d]==0) ans++;
num[d]++;
}
void del(int d){
num[d]--;
if(num[d]==0) ans--;
}
void eras(int x){
int lc=x<<1,rc=x<<1|1;
int i,j;
for(i=1;i<=cr[lc];i++)
for(j=1;j<=cl[rc];j++)
del(gcd(tr[lc].a[i],tl[rc].a[j]));
}
void pushup(int x){
int lc=x<<1,rc=x<<1|1;
int i,j;
for(i=1;i<=cr[lc];i++)
for(j=1;j<=cl[rc];j++)
add(gcd(tr[lc].a[i],tl[rc].a[j]));
all[x]=gcd(all[lc],all[rc]);
cl[x]=0;
for(i=1;i<=cl[lc];i++) tl[x].a[++cl[x]]=tl[lc].a[i];
for(i=1;i<=cl[rc];i++) tl[x].a[++cl[x]]=gcd(all[lc],tl[rc].a[i]);
sort(tl[x].a+1,tl[x].a+cl[x]+1);
cl[x]=unique(tl[x].a+1,tl[x].a+cl[x]+1)-(tl[x].a+1);
cr[x]=0;
for(i=1;i<=cr[rc];i++) tr[x].a[++cr[x]]=tr[rc].a[i];
for(i=1;i<=cr[lc];i++) tr[x].a[++cr[x]]=gcd(tr[lc].a[i],all[rc]);
sort(tr[x].a+1,tr[x].a+cr[x]+1);
cr[x]=unique(tr[x].a+1,tr[x].a+cr[x]+1)-(tr[x].a+1);
}
void build(int x,int l,int r){
if(l==r){
tl[x].a[cl[x]=1]=val[l];
tr[x].a[cr[x]=1]=val[l];
all[x]=val[l];
add(val[l]);
return;
}
int mid=l+r>>1;
build(x<<1,l,mid);
build(x<<1|1,mid+1,r);
pushup(x);
}
void chg(int x,int l,int r,int to){
if(l==r){
del(val[l]);
return;
}
int mid=l+r>>1;
if(to<=mid) chg(x<<1,l,mid,to);
else chg(x<<1|1,mid+1,r,to);
eras(x);
}
void mdf(int x,int l,int r,int to){
if(l==r){
tl[x].a[cl[x]=1]=val[l];
tr[x].a[cr[x]=1]=val[l];
all[x]=val[l];
add(val[l]);
return;
}
int mid=l+r>>1;
if(to<=mid) mdf(x<<1,l,mid,to);
else mdf(x<<1|1,mid+1,r,to);
pushup(x);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
int i,x,y;
n=rd(),m=rd();
for(i=1;i<=n;i++) val[i]=rd();
build(1,1,n);
for(i=1;i<=m;i++){
x=rd(),y=rd();
chg(1,1,n,x);
val[x]=y;
mdf(1,1,n,x);
printf("%d\n",ans);
}
return 0;
}
hdu 5930 GCD 线段树上二分/ 强行合并维护信息的更多相关文章
- HDU 4747 Mex【线段树上二分+扫描线】
[题意概述] 一个区间的Mex为这个区间没有出现过的最小自然数,现在给你一个序列,要求求出所有区间的Mex的和. [题解] 扫描线+线段树. 我们在线段树上维护从当前左端点开始的前缀Mex,显然从左到 ...
- LOJ 3059 「HNOI2019」序列——贪心与前后缀的思路+线段树上二分
题目:https://loj.ac/problem/3059 一段 A 选一个 B 的话, B 是这段 A 的平均值.因为 \( \sum (A_i-B)^2 = \sum A_i^2 - 2*B \ ...
- 【BZOJ】4293: [PA2015]Siano 线段树上二分
[题意]给定n棵高度初始为0的草,每天每棵草会长高a[i],m次收割,每次在d[i]天将所有>b[i]的草收割到b[i],求每次收割量.n<=500000. [算法]线段树上二分 [题解] ...
- 5.4 省选模拟赛 修改 线段树优化dp 线段树上二分
LINK:修改 题面就不放了 大致说一下做法.不愧是dls出的题 以前没见过这种类型的 不过还是自己dp的时候写丑了. 从这道题中得到一个结论 dp方程要写的优美一点 不过写的过丑 优化都优化不了. ...
- 贪心+离散化+线段树上二分。。。 Samara University ACM ICPC 2016-2017 Quarterfinal Qualification Contest G. Of Zorcs and Axes
题目链接:http://codeforces.com/gym/101149/problem/G 题目大意:给你n对数字,为(a[i], b[i]),给你m对数字,为(w[i], c[i]).给n对数字 ...
- [NOIP2015模拟10.27] [JZOJ4270] 魔道研究 解题报告(动态开点+权值线段树上二分)
Description “我希望能使用更多的魔法.不对,是预定能使用啦.最终我要被大家称呼为大魔法使.为此我决定不惜一切努力.”——<The Grimoire of Marisa>雾雨魔理 ...
- 【洛谷5537】【XR-3】系统设计(哈希_线段树上二分)
我好像国赛以后就再也没有写过 OI 相关的博客 qwq Upd: 这篇博客是 NOIP (现在叫 CSP 了)之前写的,但是咕到 CSP 以后快一个月才发表 -- 我最近这么咕怎么办啊 -- 题目 洛 ...
- 9 16 模拟赛&关于线段树上二分总结
1 考试时又犯了一个致命的错误,没有去思考T2的正解而是去简单的推了一下式子开始了漫漫找规律之路,不应该这样做的 为了得到规律虽然也打了暴力 但是还是打了一些不必要的程序 例如求组合数什么的比较浪费时 ...
- CF 1405E Fixed Point Removal【线段树上二分】
CF 1405E Fixed Point Removal[线段树上二分] 题意: 给定长度为\(n\)的序列\(A\),每次操作可以把\(A_i = i\)(即值等于其下标)的数删掉,然后剩下的数组 ...
随机推荐
- nodejs mysql模块简单封装
nodejs 简单的封装一些mysql模块 实现一个方法根据不同传参进行增删改查 首先要 npm install mysql 代码如下 function data(objHost,sql,callba ...
- LeetCode954二倍数对数组
问题:二倍数对数组 给定一个长度为偶数的整数数组 A,只有对 A 进行重组后可以满足 “对于每个 0 <= i < len(A) / 2,都有 A[2 * i + 1] = 2 * A[2 ...
- Python 正则表达式 贪心匹配和非贪心匹配
Python的正则表达式默认是“贪心匹配”,即在有第二义的情况下,尽可能匹配最长的字符串,在正则表达式的花括号后面跟上问号,可以变为非贪心模式 >>> >>> ha ...
- 微信在浏览器打开前的提示页面Android与IOS判断
直接在网上扒一个页面,分分钟搞定! 先看一下效果 这是用微信开发工具打开的样式,直接上完整代码 <!DOCTYPE html> <html lang="en"& ...
- 关于json数据中的多反斜杆转译--StringEscapeUtils.unescapeJava(踩过的坑)
一.需求 现有一个字符串str String str = "{\\\"name\\\":\\\"spy\\\",\\\"id\\\\&quo ...
- Charles Babbage【查尔斯·巴贝奇】
Charles Babbage When Babbage was working at Cambridge, a new idea occurred to him. 巴贝奇在剑桥工作的时候,脑海中有了 ...
- 传送流(TS)的基础知识
数字电视的TS包和TS流的组成和功能 综合考虑几下几个因素: (1)包的长度不能过短,否则包头开销所占比例过大, 导致传输效率下降 (2)包的长度不能过长,否则在丢失同步的情况下恢复同步的 周期过长, ...
- P1605迷宫
题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...
- 新手用WPF山寨QQ管家7.6(三)
由于一直忙工作,没有更新完博客,更可恨的是...在清理资料的时候不小心删除了之前自己做的各种效果的DEMO....好在项目中用到了大部分,也算有所保留,以后可不敢随便删东西了....太可怕了! 在 新 ...
- 自动检测ARouter路由地址分组使用冲突问题
背景 项目中使用ARouter进行路由,由于不同上层业务模块都可能会使用到同一目标的路由地址,因此,将所有业务模块的路由地址以一种类似静态常量的方式设置在Base模块中.这样,在实际目前上加上对应此地 ...